Structure of O-Antigens

Yuriy A. Knirel

3.1 Introduction

The lipopolysaccharide (LPS) is the major constituent of the outer leaflet of the outer membrane of Gram-negative bacteria. Its lipid A moiety is embedded in the membrane and serves as an anchor for the rest of the LPS molecule. The outermost repetitive glycan region of the LPS is linked to the lipid A through a core oligosaccharide (OS), and is designated as the O-specific polysaccharide (O-polysaccharide, OPS) or O-antigen. The O-antigen is the most variable portion of the LPS and provides serological specificity, which is used for bacterial serotyping. The OPS also provides protection to the microorganisms from host defenses such as complement mediated killing and phagocytosis, and is involved in interactions of bacteria with plants and bacteriophages. Studies of the OPSs ranging from the elucidation of their chemical structures and conformations to their biological and physico-chemical properties help improving classification schemes of Gram-negative bacteria. Furthermore, these studies contributed to a better understanding of the mechanisms of pathogenesis of infectious diseases, as well as provided information to develop novel vaccines and diagnostic reagents.

Composition and structures of O-antigens have been surveyed repeatedly [1–7]. The number of OPSs with complete structural elucidation is rapidly growing and an annually updated Bacterial Carbohydrate Structure Database (BCSDB) is available online at http://www.glyco.ac.ru/bcsdb3/. The present chapter provides an updated collection of data on composition and structures of the OPSs published until the end of 2010. To avoid extensive citation of structures already reported, only earlier reviews are referenced. Whenever known OPS structures are presented in an earlier review or, in the case of *Escherichia coli*, in a permanently updated database, they

Y.A. Knirel (🖂)

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, V-334, Russia

e-mail: yknirel@gmail.com

are only briefly discussed in this chapter. Various OPS structures were established by older methods and required reinvestigation using new techniques. For structures already revised, only the publication reporting the final structure is cited.

Classification of Gram-negative bacteria is subject to change. In this review, the current names for bacterial classes, families, genera and species are used according to the NCBI Taxonomy Browser (http://www.ncbi.nlm.nih.gov/Taxonomy/). When an OPS structure was reported under a different bacterial name, the old name is indicated in parentheses.

3.2 Composition of O-Antigens

Typical components of the OPSs are both monosaccharides widely distributed in nature and uncommon sugars (Table 3.1), including those that have not been found elsewhere (here and below, the descriptor D in abbreviations of monosaccharides of the D series is omitted).

Most monosaccharides exist in the pyranose form (in the OPS structures below, the descriptor p for this form is omitted) but several are present as furanosides (Ara, Rib, L6dAlt, xylulose) or may occur in both forms (Gal, Fuc, paratose); in a few OPSs, Rib and L6dAlt are present as pyranosides and GalNAc as a furanoside.

From non-carbohydrate constituents (Table 3.2), commonly occurring are *N*-acetyl and *O*-acetyl groups. Less common is a methyl group, which is linked to hydroxyl or amino groups or esterifies a hexuronic acid. In various OPSs, hexuronic acids exist as a primary amide (this is indicated below by letter N, e.g. GalAN) or an amide with an amino compound like 2-amino-2-deoxyglycerol (GroN) or amino acids (in case of L-lysine and its N^{ε} -(1-carboxyethyl) derivatives hexuronic acids are linked to their α -amino group). Phosphate has been found only as diesters, including a cyclic phosphate.

3.3 Structures of O-Antigens

3.3.1 General Aspects

The OPS is the most variable LPS component in terms of composition and structure. The high diversity of O-antigens results mainly from genetic variations in the O-antigen gene clusters, and is further expanded by various prophage genes, which cause additional modifications such as lateral glycosylation or/and O-acetylation (see Chap. 11). The OPS is made of oligosaccharide repeats (O-units) consisting of two to eight different monosaccharide residues (heteroglycans) or, in some bacteria, of identical sugars (homoglycans). The O-unit is first assembled on a lipid carrier and then polymerized, whereas homoglycans and part of the heteroglycans with disaccharide O-units are synthesized by an alternative pathway including a sequential transfer of single monosaccharides to the growing chain (see Chap. 9). Lateral

Pentoses, hexoses, heptoses and their deoxy derivativ	ves
D-arabinose (Ara)	D-glucose (Glc)
D-, L-xylose (Xyl, LXyl)	D-mannose (Man)
D-ribose (Rib)	D-galactose (Gal)
4-deoxy-D- <i>arabino</i> -hexose (4daraHex)	6-deoxy-D-gulose (6dGul)
6-deoxy-L-glucose (L-quinovose, LQui)	3,6-dideoxy-D- <i>arabino</i> -hexose (tyvelose, Tyv)
6-deoxy- D-, L-galactose (D-, L-fucose; Fuc, LFuc)	3,6-dideoxy-L- <i>arabino</i> -hexose (ascarylose, Asc)
6-deoxy-D-, L-mannose (D-, L-rhamnose; Rha, LRha)	3,6-dideoxy-D- <i>ribo</i> -hexose (paratose, Par)
6-deoxy-L-altrose (L6dAlt)	3,6-dideoxy-D- <i>xylo</i> -hexose (abequose, Abe)
6-deoxy-d-, l-talose (6dTal, l6dTal)	3,6-dideoxy-L-xylo-hexose (colitose, Col)
D-glycero-D-manno-heptose (DDmanHep)	L-glycero-D-manno-heptose (LDmanHep)
D-glycero-D-galacto-heptose (DDgalHep)	6-deoxy-D-manno-heptose (6dmanHep)
2-Amino-2-deoxyhexoses, amino and diamino 6-deox	ryhexoses
D-glucosamine (GlcN)	3-amino-3-deoxy-D-fucose (Fuc3N)
D-galactosamine (GalN)	4-amino-4-deoxy-D-quinovose (Qui4N)
D-mannosamine (ManN)	4-amino-4-deoxy-D-, L-rhamnose (Rha4N, LRha4N)
D-, L-quinovosamine (QuiN, LQuiN)	4-amino-4-deoxy-D-fucose (Fuc4N)
L-rhamnosamine (LRhaN)	2,3-diamino-2,3-dideoxy-L-rhamnose (LRhaN3N)
D-, L-fucosamine (FucN, LFucN)	2,4-diamino-2,4-dideoxy-D-quinovose (QuiN4N)
6-deoxy-L-talosamine (L6dTalN)	2,4-diamino-2,4-dideoxy-D-fucose (FucN4N)
3-amino-3-deoxy-D-, L-quinovose (Qui3N, LQui3N)	
Hexuronic acids, amino and diamino hexuronic acid	S
D-glucuronic (GlcA)	D-glucosaminuronic (GlcNA)
D-mannuronic (ManA)	D-mannosaminuronic (ManNA)
D-galacturonic (GalA)	D-, L-galactosaminuronic (GalNA, LGalNA)
L-altruronic (LAltA)	L-altrosaminuronic (LAltNA)
L-iduronic (LIdoA)	L-gulosaminuronic (LGulNA)
3-amino-3-deoxy-D-glucuronic (Glc3NA)	2,3-diamino-2,3-dideoxy-D-glucuronic (GlcN3NA)
2,3-diamino-2,3-dideoxy-D-mannuronic (ManN3NA)	2,3-diamino-2,3-dideoxy-D-galacturonic (GalN3NA)
2,3-diamino-2,3-dideoxy-L-guluronic (LGulN3NA)	2,4-diamino-2,4-dideoxyglucuronic (GlcN4NA)
Keto sugars	
D-, L- <i>threo</i> -pent-2-ulose (D-, L-xylulose; Xlu, LXlu)	
2-amino-2,6-dideoxy-D-xylo-hexos-4-ulose	
3-deoxy-D-manno-oct-2-ulosonic acid (ketodeoxyocto	onic acid, Kdo)
5-amino-3,5-dideoxy-D-glycero-D-galacto-non-2-ulos	onic acid (neuraminic acid, Neu)

Table 3.1 Monosaccharide components of OPSs

(continued)

Table 3.1 (continued)

5,7-diamino-5,7,9-trideoxynon-2-ulosonic acid^a

5,7-diamino-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic (pseudaminic) acid (Pse)

5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic (legionaminic) acid (Leg)

5,7-diamino-3,5,7,9-tetradeoxy-D-*glycero*-D-*talo*-non-2-ulosonic (4-epilegionaminic) acid (4eLeg)

5,7-diamino-3,5,7,9-tetradeoxy-L-*glycero*-D-*galacto*-non-2-ulosonic (8-epilegionaminic) acid (8eLeg)

5,7,8-triamino-3,5,7,8,9-pentadeoxynon-2-ulosonic acid^b

3-deoxy-D-lyxo-hept-2-ulosaric acid

Branched sugars^c

3-C-methyl-D-mannose (Man3CMe)

3-*C*-methylrhamnose (Rha3*C*Me)^a

3,6-dideoxy-4-C-[(R)-, (S)-1-hydroxyethyl]-D-xylo-hexose (yersiniose A, yersiniose B)

3,6,8-trideoxy-4-C-[(R)-1-hydroxyethyl]-D-gulo-octose (erwiniose)

3,6,10-trideoxy-4-C-[(R)-hydroxyethyl]-D-erythro-D-gulo-decose (caryophillose)

2-amino-4-C-(2-carbamoyl-2,2-dihydroxyethyl)-2,6-dideoxy-D-galactose (shewanellose)

4,8-cyclo-3,9-dideoxy-L-erythro-D-ido-nonose (caryose)

^aThe configuration of the monosaccharide remains unknown.

^bThe monosaccharide has the L-glycero-L-manno or D-glycero-L-manno configuration.

^cFor structures of branched monosaccharides see also review [7].

glycosyl groups and *O*-acetyl groups may be added to the growing OPS chain or after polymerization, and their content is often non-stoichiometric.

Some bacteria have LPS lacking OPS due to the absence or inactivation of the O-antigen gene cluster. When bacteria are able to assemble but unable to polymerize the O-unit, they elaborate LPS containing a single O-unit linked to the core OS. Several LPS forms may coexist in one strain. In some cases, LPS forms lacking O-antigen are designated as lipooligosaccharide. The length of the OPS chain varies considerably from one O-unit to more than 50 O-units. The chain length distribution is modal (except for bacteria which possess an S-layer) and is specific to each bacterial strain. It appears to be fine-tuned to give bacteria advantages in particular niches.

Most chemical data reported on OPSs are limited to the structure of the so-called chemical repeating unit, which may or may not agree with the structure of the biological O-unit that is based on the order of synthesis and that is the substrate for the O-antigen polymerization. Therefore, the monosaccharide sequence of the chemical repeating unit may be any cyclic permutation of the biological unit. Recently, it has been shown that in many heteroglycans, the first monosaccharide of the O-unit whose transfer to a lipid carrier initiates biosynthesis of the O-antigen, is a derivative of a 2-amino-2-deoxy-D-hexose (GlcN, GalN) or a 2-amino-2,6-dideoxy-D-hexose (QuiN, FucN, QuiN4N, FucN4N), all having the D-gluco or D-galacto configuration. One can assume that, when present, such an amino sugar is the first in other OPSs too. In several bacteria, e.g. Salmonella enterica, the first monosaccharide of the O-unit structure remains unknown.

• •	
O-Linked (O-alkyl groups and acetals)	
(R)-, (S) -1-carboxyethyl (lactic acid ethers)	; Rlac, Slac)
(1R,3R)-, (1S,3R)-1-carboxy-3-hydroxybut	yl (2,4-dihydroxypentanoic acid 2-ethers)
(R)-, (S)-1-carboxyethylidene (pyruvic acid	d acetals; Rpyr, Spyr)
N-Linked (N-acyl groups)	
formyl (Fo)	acetimidoyl (Am)
(<i>R</i>)-, (<i>S</i>)-2-hydroxypropanoyl (<i>R</i> 2Hp, <i>S</i> 2Hp)	3-hydroxypropanoyl (3Hp)
(<i>R</i>)-, (<i>S</i>)-3-hydroxybutanoyl (<i>R</i> 3Hb, <i>S</i> 3Hb)	4-hydroxybutanoyl (4Hb)
L-glyceroyl (LGroA)	(S)-2,4-dihydroxybutanoyl
(3S,5S)-3,5-dihydroxyhexanoyl	malonyl
succinyl	(R)-, (S)-2-hydroxy-4-succinyl (4-D-malyl, 4-L-malyl)
(S)-2-hydroxy-5-glutaryl	glycyl (Gly)
D-, L-alanyl (DAla, LAla)	L-seryl (LSer)
D-homoseryl (DHse)	L-allothreonyl (LaThr)
D-, L-4-aspartyl (4DAsp, 4LAsp)	N-(1-carboxyethyl)alanyl ^a
(2R,3R)-3-hydroxy-3-methyl-5-oxoprolyl	3-hydroxy-2,3-dimethyl-5-oxoprolyl ^a
2,4-dihydroxy-3,3,4-trimethyl- 5-oxoprolyl ^a	(2R,3R,4S)-3,4-dihydroxy-1,3-dimethyl-5-oxoprolyl
Carboxyl-linked (amides)	
2-amino-2-deoxyglycerol (GroN)	L-serine (LSer)
glycine (Gly)	L-threonine (LThr)
D-, L-alanine (DAla, LAla)	D-allothreonine (DaThr)
L-lysine (LLys)	
N^{ε} -[(<i>R</i>)-, (<i>S</i>)-1-carboxyethyl]-L-lysine ('ala	ninolysine'; RalaLys, SalaLys)
Phosphate-linked (phosphodiesters)	
glycerol (Gro)	D-glyceric acid (DGroA)
ribitol (Rib-ol)	L-arabinitol (LAra-ol)
2-aminoethanol (ethanolamine, EtN)	2-[(<i>R</i>)-1-carboxyethylamino]ethanol
2-(trimethylammonio)ethanol (choline)	2-amino-2-deoxy-2-C-methylpentonic acid ^a

Table 3.2 Non-carbohydrate components of OPSs

^aThe configuration of the amino acid remains unknown.

The core OS may carry a polysaccharide that is structurally different from the O-antigen and is encoded by a locus different from the O-antigen gene cluster. Examples of this are the enterobacterial common antigen produced by the Enterobacteriaceaee [8] and the A-band O-antigen in *Pseudomonas aeruginosa* [9]. On the other hand, a repeat of the same structure as the O-unit may be employed as a building block for another surface polymer, e.g. a capsular polysaccharide [5] or a glycoprotein [10]. More than one structurally related or sometimes unrelated OPSs, may occur in one strain. In the latter case, one of the glycans may not be a part of the LPS but for example a capsular polysaccharide that is coextracted with the LPS [11].

The repetitive OPS structure is often masked by one or more non-stoichiometric modifications, including glycosylation, O-acetylation, methylation, phosphorylation or amidation (in the structures shown below, non-stoichiometric substituents are indicated in italics). Less common are epimerization at C-5 of hexuronic acids and alternative N-acylation of an amino group by different acyl groups. A rare reason for the lack of the strict regularity is a random or in another manner irregular distribution of α - and β -linked monosaccharide residues along the polymer chain.

Many LPSs, especially with homopolysaccharide O-chains, have additional nonrepetitive domains, which result from specific initiation and termination steps of the OPS biosynthesis. For instance, incorporation of an O-methylated sugar or a different monosaccharide to the non-reducing end is thought to be a signal for cessation of the OPS chain synthesis, which allows termination of the O-chain at a specific sugar residue rather than at any residue. Another non-repetitive domain may occur between the OPS and the core OS, such as a primer of a 2-*N*-acetylamino sugar whose transfer to a lipid carrier initiates the O-antigen synthesis. More complex reducing-end domains have been found in a few OPSs but they may be much more common than anticipated. Further information on OPS-associated non-repetitive structures is given in a recent review [7], whereas the present review focuses on the O-unit structures.

3.3.2 γ-Proteobacteria

3.3.2.1 Enterobacteriaceae

A majority of the bacteria, whose O-antigen structures have been elucidated, belong to the family Enterobacteriaceae.

Salmonella

Salmonella species, the agents of salmonellosis, are a leading cause of food-borne infections in many countries; several serovars are responsible for more severe diseases, such as typhoid fever. Currently, strains of *S. enterica* are combined into 46 O-serogroups, including former serogroups A–Z. Serovar names are used for strains of ssp. *enterica*, whereas Latin numbers are used to designate other subspecies: II for ssp. *salamae*, IIIa for ssp. *arizonae*, IIIb for ssp. *diarizonae*, etc. The structures of the OPSs of *S. enterica* established by that time have been reviewed in 2006 [12], and more structures are shown below (Table 3.3).

Strains of serogroups A, B, D and E were the first bacteria whose O-antigen structures were elucidated in detail. They possess similar Man-LRha-Gal- main chains, in which the position of substitution of Man and the configuration of the linkages of Man and Gal vary both between and within O-serogroups. In serogroup D₃, α -Man- and β -Man-containing O-units coexist. In serogroups A, B and D, Man bears a 3,6-dideoxyhexose having D-*ribo* (paratose), D-*xylo* (abequose) or D-*arabino* (tyvelose) configuration, respectively, whereas in serogroup E, no 3,6-dideoxyhexose is present. Outside these serogroups, the OPSs display a variety of structures. Neutral sugars (Man, Glc, Gal, LRha, LFuc), GlcNAc and GalNAc

Table 3.3 Struc	tures of Salma	onella OPSs
-----------------	----------------	-------------

O2 (A) Paratyphi [13,14]	2)Man(α 1-4)LRha2Ac(α 1-3)Gal(α 1-
	$Par(\alpha 1-3)$ $Glc(\alpha 1-4)$
O4 (B) Typhimurium, Agona, ^a	2)Man(α1-4)LRha(α1-3)Gal(α1-
Abortusequi ^a [13,15-18]	Abe $2Ac(\alpha 1-3)$ $Glc(\alpha 1-4)$
O4 (B) Bredeney, Typhimurium	2)Man(α1-4)LRha(α1-3)Gal(α1-
SL3622 ^a [13,16,19]	Abe $2Ac(\alpha 1-3)$] $Glc(\alpha 1-6)$]
O6,7 (C1) Livingstone [20]	2)Man(β1-2)Man(α1-2)Man(α1-2)Man(β1-3)GlcNAc(β1-
	$\operatorname{Glc}(\alpha 1-3)$
O6,7 (C1) Thompson [21]	2)Man(β 1-2)Man(α 1-2)Man(α 1-2)Man(β 1-3)GlcNAc(β 1- and
	2)Man(β1-2)Man(α1-2)Man(α1-2)Man(β1-3)GlcNAc(β1-
	$\operatorname{Glc}(\alpha 1-3)$
O6,7 (C1) Ohio [22]	2)Man(β1-2)Man(α1-2)Man(α1-2)Man(β1-3)GlcNAc(β1-
	$\operatorname{Glc}(\alpha 1-3)$
O6,7 (C ₄) Livingstone var. 14 ⁺	2)Man(β1-2)Man(α1-2)Man(α1-2)Man(β1-3)GlcNAc(β1-
(S. eimsbuttel) [23]	Glc(a1-3)
O8 (C2) Newport [13,24]	4)LRha2Ac(β1-2)Man(α1-2)Man(α1-3)Gal(β1-
	Abe($\alpha 1$ -3) $Glc2Ac(\alpha 1$ -3)
O8 (C3) Kentucky I.S. 98 [13]	4)LRha(β 1-2)Man(α 1-2)Man(α 1-3)Gal(β 1-
	Abe $(\alpha 1-3)$ $Glc 2Ac(\alpha 1-4)$
08 (C.) Kentuchy 98/39 [25]	4)LRha(β1-2)Man(α1-2)Man(α1-3)Gal(β1-
08 (C3) Kentucky 98/39 [25]	Abe $(\alpha 1-3)$] $Glc(\alpha 1-2)$]
O9 (D1) Typhi, Enteritidis SE6ª,	2)Man(α1-4)LRha(α1-3)Gal(α1-
Gallinarum bv. Pullorum 77 ^a [26-28]	Tyv(α 1-3) $\int Glc 2Ac(\alpha l - 4)$
O9 (D1) Enteritidis I.S. 64,	2)Man(α 1-4)LRha(α 1-3)Gal(α 1-
Gallinarum bv. Pullorum 11 [28,29]	$Tyv(\alpha 1-3)$
O9,46 (D2) Strasbourg [13]	6)Man(β1-4)LRha(α1-3)Gal(α1-
	$\operatorname{Tyv}(\alpha 1-3) \downarrow \qquad \operatorname{Glc}(\alpha 1-4) \downarrow$
O9,46 (D ₂) II (S. haarlem) [30]	6)Man(β1-4)LRha(α1-3)Gal(α1-
	Tyv(α 1-3)
O9,46,27 (D3) II (S. zuerich) [31]	6)Man(α/β 1-4)LRha(α 1-3)Gal(α 1-
	$\operatorname{Tyv}(\alpha 1-3) \int Glc(\alpha 1-6) \int$
O3,10 (E1) Anatum [26,32]	6)Man(β1-4)LRha(α1-3)Gal6Ac(α1-
O3,10 (E1) Muenster [13]	6)Man(β1-4)LRha(α1-3)Gal(α1-
	$Glc(\alpha 1-4)$
O3,10 (E ₂) Anatum var. 15 ⁺	6)Man(β1-4)LRha(α1-3)Gal(β1-
(S. newington) [26]	
O3,10 (E ₃) Lexington var. 15 ⁺ ,34 ⁺	6)Man(β1-4)LRha(α1-3)Gal(β1-
(S. illinois) [26]	$Glc(\alpha l-4)$
O1,3,19 (E4) Senftenberg [13,26]	6)Man(β1-4)LRha(α1-3)Gal(α1-
	$Glc(\alpha 1-6)$
O11 (F) Aberdeen [33]	3)Gal(α1-4)LRha(α1-3)GlcNAc(β1-
	Man(β1-4)
O13 (G) [34]	2)LFuc(α1-2)Gal(β1-3)GalNAc(α1-3)GlcNAc(α1-

(continued)

Table 3.3 (continued)

06 14 (H) Boecker Carray [35 36]	6)Man(α 1-2)Man(α 1-2)Man(β 1-3)GlcNAc(α 1- and
(1) Docekei, cailad [55,50]	6 Man(α 1-2) Man(α 1-2) Man(β 1-3) G lo NA α (α 1-
	Glacer 1 2)
OK 14 (II) Madalia [27]	$O((\alpha 1-3)^{2})$
06,14 (H) Madella [37]	6)Man(α 1-2)Man(α 1-2)Man(β 1-3)GicNAc(α 1- and
	6)Man(α 1-2)Man(α 1-2)Man(β 1-3)GlcNAc(α 1- and
	$\operatorname{Glc}(\alpha 1-3)^{\perp}$
	6)Man(α 1-2)Man(α 1-2)Man(β 1-3)GlcNAc(α 1-
	Glc(a1-4)
O16 (I) [38]	4)GalNAc(α 1-6)Man3Ac(α 1-3)LFuc(α 1-3)GalNAc(β 1-
	$\lfloor (3-1\alpha) \rfloor$ Fuc $Glc(\beta 1-4) \rfloor$
O17 (J) [39]	2)Gal(α1-3)ManNAc(β1-6)Galf2Ac(β1-3)GlcNAc(β1-
	$(4-1\alpha)$ Galf
O18 (K) Cerro [40]	4)Man(α1-2)Man(α1-2)Man(β1-3)GalNAc(α1-
O21 (L) ^b [41]	4)GalNAc(β1-3)Gal(α1-4)Gal(β1-3)GalNAc(β1-
	L(3-1α)GlcNAc
O28 (M, O281,282) Telaviv [42]	4)Qui3NAc(β1-3)Rib/(β1-4)Gal(β1-3)GalNAc(α1-
presidents of a sign for how or all all the same to be a set of the set of th	$Gal(\alpha 1-3)Gal(\alpha 1-3) \int Glc(\alpha 1-4) \int$
O28 (M, O281,283) Dakar [43]	4)Qui3NAc(α 1-3)LRha(α 1-4)Gal(β 1-3)GalNAc(α 1-
	Glc(β1-4)
O30 (N) Landau [44]	2)Rha4NAc(α 1-3)LFuc(α 1-4)Glc6Ac(β 1-3)GalNAc(α 1-
O30 (N) Urbana, Godesberg [45]	2)Rha4NAc(α 1-3)LFuc(α 1-4)Glc(β 1-3)GalNAc(α 1
	Glc(β1-4)
	·
O35 (O) Adelaide [46]	4)Glc(α 1-4)Gal(α 1-3)GlcNAc(β 1-
O35 (O) Adelaide [46]	4)Glc(α 1-4)Gal(α 1-3)GlcNAc(β 1- Col(α 1-3) \downarrow (6-1 α)Col
O35 (O) Adelaide [46]	4)Glc(α1-4)Gal(α1-3)GlcNAc(β1- Col(α1-3) ^[] ^[] ^[] ^[] ^[] ^[] ^[] ^[]
O35 (O) Adelaide [46]	4)Glc(α 1-4)Gal(α 1-3)GlcNAc(β 1- Col(α 1-3) \downarrow (6-1 α)Col 3)Gal(β 1-4)Glc(β 1-3)GalNAc(β 1- Gal(β 1-4) \downarrow (2-1 β)GlcNAc
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47]	4)Glc(α 1-4)Gal(α 1-3)GlcNAc(β 1- Col(α 1-3) \downarrow \lfloor (6-1 α)Col 3)Gal(β 1-4)Glc(β 1-3)GalNAc(β 1- Gal(β 1-4) \downarrow \lfloor (2-1 β)GlcNAc 2)Qui3NAc(α 1-3)Man(α 1-3)LFuc(α 1-3)GalNAc(α 1-
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48]	4)Glc(α 1-4)Gal(α 1-3)GlcNAc(β 1- Col(α 1-3) \downarrow (6-1 α)Col 3)Gal(β 1-4)Glc(β 1-3)GalNAc(β 1- Gal(β 1-4) \downarrow (2-1 β)GlcNAc 2)Qui3NAc(α 1-3)Man(α 1-3)LFuc(α 1-3)GalNAc(α 1- 4)GalNAc(α 1-3)Man(β 1-4)Glc(β 1-3)GalNAc(α 1-
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48]	$\begin{array}{c} 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Col}(\alpha 1-3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49]	4)Glc(α 1-4)Gal(α 1-3)GlcNAc(β 1- Col(α 1-3) \downarrow (6 -1 α)Col 3)Gal(β 1-4)Glc(β 1-3)GalNAc(β 1- Gal(β 1-4) \downarrow (2 -1 β)GlcNAc 2)Qui3NAc(α 1-3)Man(α 1-3)LFuc(α 1-3)GalNAc(α 1- 4)GalNAc(α 1-3)Man(β 1-4)Glc(β 1-3)GalNAc(α 1- GlcNAc(β 1-2) \downarrow 2)Man(β 1-4)Glc(α 1-3)LOuiNAc(α 1-3)GlcNAc(α 1-
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50]	4)Glc(α 1-4)Gal(α 1-3)GlcNAc(β 1- Col(α 1-3) \downarrow (6 -1 α)Col 3)Gal(β 1-4)Glc(β 1-3)GalNAc(β 1- Gal(β 1-4) \downarrow (2 -1 β)GlcNAc 2)Qui3NAc(α 1-3)Man(α 1-3)LFuc(α 1-3)GalNAc(α 1- 4)GalNAc(α 1-3)Man(β 1-4)Glc(β 1-3)GalNAc(α 1- GlcNAc(β 1-2) \downarrow 2)Man(β 1-4)Glc(α 1-3)LQuiNAc(α 1-3)GlcNAc(α 1- 3)LRha(α 1-2)LRha(α 1-2)Gal(α 1-3)GlcNAc(β 1-
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50]	$\begin{array}{c} 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Col}(\alpha 1-3)^{j} \lfloor (6-1\alpha) \operatorname{Col} \\ 3) \operatorname{Gal}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\beta 1-\\ \operatorname{Gal}(\beta 1-4)^{j} \qquad \lfloor (2-1\beta) \operatorname{GlcNAc} \\ 2) \operatorname{Qui3NAc}(\alpha 1-3) \operatorname{Man}(\alpha 1-3) \operatorname{LFuc}(\alpha 1-3) \operatorname{GalNAc}(\alpha 1-\\ 4) \operatorname{GalNAc}(\alpha 1-3) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-\\ \operatorname{GlcNAc}(\beta 1-2)^{j} \\ 2) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\alpha 1-3) \operatorname{LQuiNAc}(\alpha 1-3) \operatorname{GlcNAc}(\alpha 1-\\ 3) \operatorname{LRha}(\alpha 1-2) \operatorname{LRha}(\alpha 1-2) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \lfloor (2-1\beta) \operatorname{ManNAc} \\ \end{array}\right)$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^e [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51]	$\begin{array}{c} 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Col}(\alpha 1-3)^{j} \lfloor (6-1\alpha) \operatorname{Col} \\ 3) \operatorname{Gal}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\beta 1-\\ \operatorname{Gal}(\beta 1-4)^{j} \qquad \lfloor (2-1\beta) \operatorname{GlcNAc} \\ 2) \operatorname{Qui3NAc}(\alpha 1-3) \operatorname{Man}(\alpha 1-3) \operatorname{LFuc}(\alpha 1-3) \operatorname{GalNAc}(\alpha 1-\\ 4) \operatorname{GalNAc}(\alpha 1-3) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-\\ \operatorname{GlcNAc}(\beta 1-2)^{j} \\ 2) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\alpha 1-3) \operatorname{LQuiNAc}(\alpha 1-3) \operatorname{GlcNAc}(\alpha 1-\\ 3) \operatorname{LRha}(\alpha 1-2) \operatorname{LRha}(\alpha 1-2) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \ \ \ \ \ \ \ \ \ \ \ \ \$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^e [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51]	$\begin{array}{c} 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Col}(\alpha 1-3)^{j} \lfloor (6-1\alpha) \operatorname{Col} \\ 3) \operatorname{Gal}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\beta 1-\\ \operatorname{Gal}(\beta 1-4)^{j} \qquad \lfloor (2-1\beta) \operatorname{GlcNAc} \\ 2) \operatorname{Qui3NAc}(\alpha 1-3) \operatorname{Man}(\alpha 1-3) \operatorname{LFuc}(\alpha 1-3) \operatorname{GalNAc}(\alpha 1-\\ 4) \operatorname{GalNAc}(\alpha 1-3) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-\\ \operatorname{GlcNAc}(\beta 1-2)^{j} \\ 2) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\alpha 1-3) \operatorname{LQuiNAc}(\alpha 1-3) \operatorname{GlcNAc}(\alpha 1-\\ 3) \operatorname{LRha}(\alpha 1-2) \operatorname{LRha}(\alpha 1-2) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \left\lfloor (2-1\beta) \operatorname{ManNAc} \\ 4) \operatorname{LFuc}(\alpha 1-2) \operatorname{Gal}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Gal}(\alpha 1-3) \int \\ \end{array}\right)$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52]	$\begin{array}{c} 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Col}(\alpha 1-3)^{j} \lfloor (6-1\alpha) \operatorname{Col} \\ 3) \operatorname{Gal}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\beta 1-\\ \operatorname{Gal}(\beta 1-4)^{j} \qquad \lfloor (2-1\beta) \operatorname{GlcNAc} \\ 2) \operatorname{Qui3NAc}(\alpha 1-3) \operatorname{Man}(\alpha 1-3) \operatorname{LFuc}(\alpha 1-3) \operatorname{GalNAc}(\alpha 1-\\ 4) \operatorname{GalNAc}(\alpha 1-3) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-\\ \operatorname{GlcNAc}(\beta 1-2)^{j} \\ 2) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\alpha 1-3) \operatorname{LQuiNAc}(\alpha 1-3) \operatorname{GlcNAc}(\alpha 1-\\ 3) \operatorname{LRha}(\alpha 1-2) \operatorname{LRha}(\alpha 1-2) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \left\lfloor (2-1\beta) \operatorname{ManNAc} \\ 4) \operatorname{LFuc}(\alpha 1-2) \operatorname{Gal}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Gal}(\alpha 1-3)^{j} \\ \end{array} \right] \\ 2) \operatorname{Glc}(\alpha 1-6) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Gal}(\alpha 1-3)^{j} \\ \end{array}$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52]	$\begin{array}{c} 4) Glc(\alpha 1-4) Gal(\alpha 1-3) GlcNAc(\beta 1-\\ Col(\alpha 1-3)^{j} \lfloor (6-1\alpha) Col \\ 3) Gal(\beta 1-4) Glc(\beta 1-3) GalNAc(\beta 1-\\ Gal(\beta 1-4)^{j} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52] O45 (W) Illa (S. arizonae) [53]	$\begin{array}{c} 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Col}(\alpha 1-3)^{j} \lfloor (6-1\alpha) \operatorname{Col} \\ 3) \operatorname{Gal}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\beta 1-\\ \operatorname{Gal}(\beta 1-4)^{j} \lfloor (2-1\beta) \operatorname{GlcNAc} \\ 2) \operatorname{Qui3NAc}(\alpha 1-3) \operatorname{Man}(\alpha 1-3) \operatorname{LFuc}(\alpha 1-3) \operatorname{GalNAc}(\alpha 1-\\ 4) \operatorname{GalNAc}(\alpha 1-3) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-\\ \operatorname{GlcNAc}(\beta 1-2)^{j} \\ 2) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\alpha 1-3) \operatorname{LQuiNAc}(\alpha 1-3) \operatorname{GlcNAc}(\alpha 1-\\ 3) \operatorname{LRha}(\alpha 1-2) \operatorname{LRha}(\alpha 1-2) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \lfloor (2-1\beta) \operatorname{ManNAc} \\ 4) \operatorname{LFuc}(\alpha 1-2) \operatorname{Gal}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Gal}(\alpha 1-3)^{j} \\ 2) \operatorname{Glc}(\alpha 1-6) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \int \\ 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Glc}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-\\$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52] O45 (W) IIIa (S. arizonae) [53]	$4) Glc(\alpha 1-4) Gal(\alpha 1-3) GlcNAc(\beta 1-Col(\alpha 1-3) \downarrow (6-1\alpha) Col3) Gal(\beta 1-4) Glc(\beta 1-3) GalNAc(\beta 1-Gal(\beta 1-4) \downarrow (2-1\beta) GlcNAc2) Qui3NAc(\alpha 1-3) Man(\alpha 1-3) LFuc(\alpha 1-3) GalNAc(\alpha 1-d) GalNAc(\alpha 1-3) Man(\alpha 1-3) LFuc(\alpha 1-3) GalNAc(\alpha 1-GlcNAc(\beta 1-3) Man(\beta 1-3) LFuc(\alpha 1-3) GalNAc(\alpha 1-GlcNAc(\beta 1-2)]2) Man(\beta 1-2) LRha(\alpha 1-2) Gal(\alpha 1-3) GlcNAc(\alpha 1-\downarrow (2-1\beta) ManNAc4) LFuc(\alpha 1-2) Gal(\beta 1-3) GlcNAc(\beta 1-Gal(\alpha 1-3)]2) Glc(\alpha 1-6) Glc(\alpha 1-3) GlcNAc(\beta 1-GlcNAc(\beta 1-3)]4) GlcA(\beta 1-4) LFuc(\alpha 1-3) GlcNAc(\beta 1-GlcNAc(\beta 1-3)]4) GlcA(\beta 1-4) LFuc(\alpha 1-3) GlcNAc(\beta 1-LFuc(\alpha 1-2)]$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^e [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52] O45 (W) IIIa (<i>S. arizonae</i>) [53]	$4) Glc(\alpha 1-4) Gal(\alpha 1-3) GlcNAc(\beta 1-Col(\alpha 1-3) \downarrow (6-1\alpha) Col3) Gal(\beta 1-4) Glc(\beta 1-3) GalNAc(\beta 1-Gal(\beta 1-4) \downarrow (2-1\beta) GlcNAc2) Qui3NAc(\alpha 1-3) Man(\alpha 1-3) LFuc(\alpha 1-3) GalNAc(\alpha 1-GlcNAc(\alpha 1-3) Man(\beta 1-4) Glc(\beta 1-3) GalNAc(\alpha 1-GlcNAc(\beta 1-2) \downarrow2) Man(\beta 1-4) Glc(\alpha 1-3) LQuiNAc(\alpha 1-3) GlcNAc(\alpha 1-GlcNAc(\beta 1-2) \downarrow2) Man(\beta 1-4) Glc(\alpha 1-3) LQuiNAc(\alpha 1-3) GlcNAc(\beta 1-\downarrow (2-1\beta) ManNAc4) LFuc(\alpha 1-2) Gal(\beta 1-3) GalNAc(\alpha 1-3) GlcNAc(\beta 1-Gal(\alpha 1-3) \downarrow2) Glc(\alpha 1-6) Glc(\alpha 1-4) Gal(\alpha 1-3) GlcNAc(\beta 1-GlcNAc(\beta 1-3) \downarrow4) GlcA(\beta 1-4) LFuc 3Ac(\alpha 1-3) Rib/(\beta 1-4) Gal(\beta 1-3) GlcNAc(\beta 1-LFuc(\alpha 1-2) \downarrow2) Rib-ol(5-R-6) Gal4Ac(\alpha 1-3) FucNAm(\alpha 1-3) GlcNAc(\alpha 1-LFuc(\alpha 1-2) \downarrow$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^e [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O43 (U) Milwaukee [51] O44 (V) [52] O45 (W) IIIa (<i>S. arizonae</i>) [53] O47 (X) [54] O48 (V) Toucra [55 56]	$4) Glc(\alpha 1-4) Gal(\alpha 1-3) GlcNAc(\beta 1-Col(\alpha 1-3) \downarrow (6-1\alpha) Col3) Gal(\beta 1-4) Glc(\beta 1-3) GalNAc(\beta 1-Gal(\beta 1-4) \downarrow (2-1\beta) GlcNAc2) Qui3NAc(\alpha 1-3) Man(\alpha 1-3) LFuc(\alpha 1-3) GalNAc(\alpha 1-GlcNAc(\alpha 1-3) Man(\alpha 1-3) LFuc(\alpha 1-3) GalNAc(\alpha 1-GlcNAc(\beta 1-2) \downarrow (2-1\beta) GlcNAc(\alpha 1-3) GlcNAc(\alpha 1-GlcNAc(\beta 1-2) J)2) Man(\beta 1-2) LRha(\alpha 1-2) Gal(\alpha 1-3) GlcNAc(\alpha 1-\downarrow (2-1\beta) ManNAc4) LFuc(\alpha 1-2) Gal(\beta 1-3) GlcNAc(\beta 1-Gal(\alpha 1-3) \downarrow J2) Glc(\alpha 1-6) Glc(\alpha 1-3) GlcNAc(\beta 1-Gal(\alpha 1-3) \downarrow J4) GlcA(\beta 1-4) LFuc3Ac(\alpha 1-3) GlcNAc(\beta 1-LFuc(\alpha 1-2) \downarrow J2) Rib-ol(5-P-6) Gal4Ac(\alpha 1-3) LFucNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\beta 1-4) Neu 5 Ac 7 24c(\alpha 2-3) LENCNAm(\alpha 1-3) GlcNAc(\alp$
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^e [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52] O45 (W) IIIa (<i>S. arizonae</i>) [53] O47 (X) [54] O48 (Y) Toucra [55,56] O50 (Z) II (<i>S. greenside</i>) [146]	$\begin{array}{c} 4) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Col}(\alpha 1-3)^{j} \lfloor (6-1\alpha) \operatorname{Col} \\ 3) \operatorname{Gal}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\beta 1-\\ \operatorname{Gal}(\beta 1-4)^{j} \lfloor (2-1\beta) \operatorname{GlcNAc} \\ 2) \operatorname{Qui3NAc}(\alpha 1-3) \operatorname{Man}(\alpha 1-3) \operatorname{LFuc}(\alpha 1-3) \operatorname{GalNAc}(\alpha 1-\\ 3) \operatorname{GalNAc}(\alpha 1-3) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-\\ \operatorname{GlcNAc}(\beta 1-2)^{j} \\ 2) \operatorname{Man}(\beta 1-4) \operatorname{Glc}(\alpha 1-3) \operatorname{LQuiNAc}(\alpha 1-3) \operatorname{GlcNAc}(\alpha 1-\\ 3) \operatorname{LRha}(\alpha 1-2) \operatorname{LRha}(\alpha 1-2) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \lfloor (2-1\beta) \operatorname{ManNAc} \\ 4) \operatorname{LFuc}(\alpha 1-2) \operatorname{Gal}(\beta 1-3) \operatorname{GalNAc}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{Gal}(\alpha 1-3)^{j} \\ 2) \operatorname{Glc}(\alpha 1-6) \operatorname{Glc}(\alpha 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-3)^{j} \\ 4) \operatorname{GlcA}(\beta 1-4) \operatorname{LFuc} 3Ac(\alpha 1-3) \operatorname{Rib}f(\beta 1-4) \operatorname{Gal}(\beta 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{LFuc}(\alpha 1-2)^{j} \\ 2) \operatorname{Rib} \operatorname{ol}(5-P-6) \operatorname{Gal} 4Ac(\alpha 1-3) \operatorname{LFucNAm}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ 4) \operatorname{Neu5Ac}7.9 \operatorname{Ac}(\alpha 2-3) \operatorname{LFucNAm}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ 4) \operatorname{Neu5Ac}7.9 \operatorname{Ac}(\alpha 2-3) \operatorname{LFucNAm}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-\\ \operatorname{GlcNAc}(\beta 1-4) \operatorname{Cal}(\alpha 1-3) \operatorname{GalNAc}(\beta 1-) \\ \operatorname{GlcNAc}(\beta 1-4) \operatorname{Gal}(\alpha 1-3) \operatorname{GlcNAc}(\beta 1-) \\ \operatorname{GlcNAc}(\beta 1-3) \operatorname{Gal}(\alpha 2-3) \operatorname{GalNAc}(\beta 1-) \\ \operatorname{GlcNAc}(\beta 1-) \operatorname{GlcNAc}(\beta 1-) \\ \operatorname{GlcNAc}(\beta 1-) \\ \operatorname{GlcNAc}(\beta 1-) \operatorname{GlcNAc}(\beta 1-) \\ $
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^e [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52] O45 (W) IIIa (<i>S. arizonae</i>) [53] O47 (X) [54] O48 (Y) Toucra [55,56] O50 (Z) II (<i>S. greenside</i>) [1,46]	4)Glc(α1-4)Gal(α1-3)GlcNAc(β1- Col(α1-3) \downarrow (6-1α)Col 3)Gal(β1-4) \downarrow (2-1β)GlcNAc 2)Qui3NAc(α1-3)Man(α1-3)LFuc(α1-3)GalNAc(α1- GlcNAc(α1-3)Man(β1-4)Glc(β1-3)GalNAc(α1- GlcNAc(β1-2) \downarrow 2)Man(β1-4)Glc(α1-3)LQuiNAc(α1-3)GlcNAc(α1- 3)LRha(α1-2)LRha(α1-2)Gal(α1-3)GlcNAc(β1- \lfloor (2-1β)ManNAc 4)LFuc(α1-2)Gal(β1-3)GalNAc(α1-3)GlcNAc(β1- Gal(α1-3) \downarrow 2)Glc(α1-6)Glc(α1-4)Gal(α1-3)GlcNAc(β1- GlcNAc(β1-3) \downarrow 4)GlcA(β1-4)LFuc3Ac(α1-3)Rib/(β1-4)Gal(β1-3)GlcNAc(β1- LFuc(α1-2) \downarrow 2)Rib-ol(5-P-6)Gal4Ac(α1-3)LFucNAm(α1-3)GlcNAc(β1- 4)Neu5Ac7,9Ac(α2-3)LFucNAm(α1-3)GlcNAc(β1- 6)GlcNAc(β1-3)Gal(α1-3)GalNAc(β1- [(3-1β)Gal(α1-3)Gal)Ac(β1- [(3-1β)Gal(α1-3)GalNAc(β1- [(3-1β)Gal(α1-3)GalNAc(β1- [(3-1β)Gal(α1-3)GalNAc(β1-
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52] O45 (W) IIIa (<i>S. arizonae</i>) [53] O47 (X) [54] O48 (Y) Toucra [55,56] O50 (Z) II (<i>S. greenside</i>) [1,46]	4)Glc(α1-4)Gal(α1-3)GlcNAc(β1- Col(α1-3) \downarrow (6-1α)Col 3)Gal(β1-4) \downarrow (2-1β)GlcNAc 2)Qui3NAc(α1-3)Man(α1-3)LFuc(α1-3)GalNAc(α1- 4)GalNAc(α1-3)Man(β1-4)Glc(β1-3)GalNAc(α1- GlcNAc(β1-2) \downarrow 2)Man(β1-4)Glc(α1-3)LQuiNAc(α1-3)GlcNAc(α1- 3)LRha(α1-2)LRha(α1-2)Gal(α1-3)GlcNAc(β1- (2-1β)ManNAc 4)LFuc(α1-2)Gal(β1-3)GalNAc(α1-3)GlcNAc(β1- Gal(α1-3) \downarrow 2)Glc(α1-6)Glc(α1-4)Gal(α1-3)GlcNAc(β1- GlcNAc(β1-3) \downarrow 4)GlcA(β1-4)LFuc3Ac(α1-3)Rib/(β1-4)Gal(β1-3)GlcNAc(β1- LFuc(α1-2) \downarrow 2)Rib-ol(5-P-6)Gal4Ac(α1-3)LFucNAm(α1-3)GlcNAc(β1- (3-1β)Gal(α1-3)GalNAc(β1- (3-1β)Gal(α1-3)GalNAc(β1- (3-1β)Gal(α1-3)GalNAc(β1- (3-1β)Gal(2-1α)Col
O35 (O) Adelaide [46] O38 (P) [38] O39 (Q) Mara ^c [47] O40 (R) Riogrande [48] O41 (S) [49] O42 (T) [50] O43 (U) Milwaukee [51] O44 (V) [52] O45 (W) IIIa (S. arizonae) [53] O47 (X) [54] O48 (Y) Toucra [55,56] O50 (Z) II (S. greenside) [1,46] O50 IV (S. arizonae) [57]	4)Glc(α1-4)Gal(α1-3)GlcNAc(β1- Col(α1-3) \downarrow (6-1α)Col 3)Gal(β1-4)Glc(β1-3)GalNAc(β1- Gal(β1-4) \downarrow (2-1β)GlcNAc 2)Qui3NAc(α1-3)Man(α1-3)LFuc(α1-3)GalNAc(α1- GlcNAc(α1-3)Man(β1-4)Glc(β1-3)GalNAc(α1- GlcNAc(β1-2) \downarrow 2)Man(β1-4)Glc(α1-3)LQuiNAc(α1-3)GlcNAc(α1- 3)LRha(α1-2)LRha(α1-2)Gal(α1-3)GlcNAc(β1- \lfloor (2-1β)ManNAc 4)LFuc(α1-2)Gal(β1-3)GalNAc(α1-3)GlcNAc(β1- Gal(α1-3) \downarrow 2)Glc(α1-6)Glc(α1-4)Gal(α1-3)GlcNAc(β1- GlcNAc(β1-3) \downarrow 4)GlcA(β1-4)LFuc3Ac(α1-3)Rib/(β1-4)Gal(β1-3)GlcNAc(β1- LFuc(α1-2) \downarrow 2)Rib-ol(5-P-6)Gal4Ac(α1-3)LFucNAm(α1-3)GlcNAc(β1- (3-1β)Gal(α1-3)Gal(α1-3)GalNAc(β1- \lfloor (3-1β)Gal(α1-3)GalNAc(β1- \lfloor (3-1β)GalNAc(β1- \lfloor (3-1β)GalNAc(β1- \lfloor (3-1β)GalNAc(β1- \lfloor (3-1β)GalNAC(β1- \lfloor

(continued)

O51 [58]	6)Glc(α1-4)Gal(β1-3)GalNAc(α1-3)GlcNAc(β1- GlcNAc(β1-3)
O52 [50]	$2) Ribf(\beta 1-4) Gal(\beta 1-4) GlcNAc(\alpha 1-4) Gal(\beta 1-3) GlcNAc(\alpha 1-4) Gal(\beta 1-4)$
O53 [59]	2)Galf(α1-4)GalNAc(β1-4)LRha2,3Ac(α1-3)GlcNAc(β1-
O54 Borreze [60]	4)ManNAc(β1-3)ManNAc(β1-
O55 [61]	2)Glc(β1-2)Fuc3NAc(β1-6)Glc(α1-4)GalNAc(α1-3)GlcNAc(β1-
O56 [62]	3)Qui4N(LSerAc)(β1-3)Ribf(β1-4)GalNAc(α1-3)GlcNAc(α1-
O57 [63]	3)LRha(α1-2)LRha(α1-4)Glc(α1-3)GalNAc(β1-
O58 [64]	3)Qui4N(DAlaS3Hb)(β1-6)GlcNAc(α1-3)LQuiNAc(α1-3)GlcNAc(α1-
O59 ^d [65]	2)Gal(β1-3)GlcNAc(α1-4)LRha(α1-3)GlcNAc(β1-
O60 [66]	2)Man(β1-3)Glc(β1-3)GlcNAc(β1- Fuc3NFo(α1-3)
O61 IIIb (S. arizonae) [67]	8)8eLeg5(R3Hb)7Ac(α 2-3)LFucNAm(α 1-3)GlcNAc(α 1-
O62 IIIa (S. arizonae) ^e [68]	3) $LRha(\alpha 1-2)LRha(\alpha 1-3)LRha(\alpha 1-2)LRha(\alpha 1-3)GlcNAc(\beta 1-L(2-1\alpha)GalNAcAN$
O63 IIIa (S. arizonae) [69]	3)Gal(β1-4)Glc(α1-4)GalNAc(α1-3)GalNAc(β1-
O65 [50]	4)GlcNAc(β1-4)Man(β1-4)Man(α1-3)GlcNAc(β1-
O66 [70]	2)Gal(α1-6)Gal(α1-4)GalNAc(α1-3)GalNAc6Ac(β1- Glc(β1-3)

Table 3.3 (continued)

^aThe OPS lacks O-acetylation.

^bThis structure has been published erroneously as that of *S. enterica* ssp. *arizonae* O64 (*Arizona* 29) and *Citrobacter* O32 [71]. Earlier, another structure has been established for *S. enterica* ssp. *arizonae* O21 [72], which, in fact, may belong to *Citrobacter braakii* O37 [73].

^cThe absolute configuration of Qui3NAc has been revised from L to D [74].

^dEarlier, another structure has been reported for *S. enterica* ssp. *arizonae* O59 [75], which, in fact, may belong to *Citrobacter braakii* O35 [76] or *E. coli* O15 [65].

^eAmidation of GalNAcA has not been originally reported [68] but demonstrated later [50].

are common constituents, and ManNAc is present in three OPSs, including the O54 antigen, which is a homopolymer of ManNAc. There are present also 6-deoxyamino sugars, such as LQuiN, Qui3N, Qui4N, LFucN, Fuc3N and Rha4N, which often bear uncommon *N*-acyl groups, such as formyl, acetimidoyl, (*R*)-3-hydroxybutanoyl, *N*-[(*S*)-3-hydroxybutanoyl]-D-alanyl and *N*-acetyl-L-seryl. A few OPSs are acidic, from which the O48 and O61 antigens contain derivatives of higher acidic sugars: neuraminic acid (Neu) and 8-epilegionaminic acid (8eLeg), respectively. The O47 antigen is phosphorylated and has a ribitol teichoic acid-like structure. The O62 antigen contains GalNAcA but is neutral as the acid occurs in the amide form. Additional modifications by glucosylation or/and O-acetylation further extend the diversity of the O-antigen forms within several O-serogroups, including serogroups A-E. In serogroups B, C₁, D₃ and H, the glucosylated and non-glucosylated forms are discrete polymer chains. The O-polysaccharides of serovars

Telaviv $(O28_1, 28_2)$ and Dakar $(O28_1, 28_3)$ are significantly different in composition and structure of both main and side chains that is unusual for strains belonging to the same *Salmonella* serogroup.

A polysaccharide different from the O-antigen may be a part of the LPS of *Salmonella*. For instance, the T1-specificity of a transient form of *S. enterica* is defined by 6)Galf(β 1-3)Galf(β 1-3)Galf(β 1-and 2)Ribf(β 1-homopolymers [1], whose synthesis is determined by the *rft* locus. The T1-antigen as well as the O54 antigen, which is encoded by genes located on a plasmid [60], can be co-expressed with various *S. enterica* O-antigens. Infection of a serovar Typhimurium strain with the CoIIb drd2 plasmid suppressed the normal O-antigen synthesis and induced synthesis of an altered LPS O-chain, probably by activation of a chromosomal operon inactive in the wild strain [77]:

3)LRha(α 1-6)Glc(α 1-2)Man(α 1-3)GlcNAc(β 1-L(2-1 α)Galf

Citrobacter, Edwardsiella

Bacteria of the genus *Citrobacter* are normal inhabitants of human and animal intestine but may cause gastrointestinal diseases, urinary tract infections and bacteremia. The OPS structures have been established for the majority of the existing 43 O-serogroups and several nontypable strains [78]. Many from them consist only of neutral monosaccharides, such as common hexoses, pentoses (Xyl, Rib) and deoxy sugars: both enantiomers of Rha and Fuc, a unique monosaccharide 4-deoxy-*D-arabino*-hexose (4daraHex) and abequose. A minority of the OPSs are acidic due to the occurrence of an acidic sugar (GlcA, Neu5Ac), glycerol phosphate or ethanolamine phosphate as a substituent or a glycosyl phosphate group in the main chain. Remarkably, in the O32 antigen, L-glyceric acid (LGroA) interlinks the Fuc3N residues being in each pair N-linked to one residue and glycosylated by the other. Another uncommon amino sugar, Rha4NAc, builds up various homopolysaccharides of serogroup O9 strains and is present also in the heteropolysaccharide of two nontypable strains (Table 3.4).

In the O12 and O41 antigens, GlcN and Fuc3N bear a (*R*)-3-hydroxybutanoyl group. The same OPS may be characteristic for more than one O-serogroup. For instance, a 4dAraHex homopolymer is present in serogroups O4, O36 and O27, and variations in the LPS core OS are the reason for classification of the corresponding strains in three different O-serogroups [78]. The O-antigens of serogroups O1-O3 and O7 possess similar 4)Sug(α 1-3)Sug(β 1-4)Sug(β 1- main chains, where Sug indicates either Man or Rha. Two pairs of strains of serogroups O7 and O12 have quite different structures, and their classification to one O-serogroup is thus questioned.

Various *Citrobacter* O-antigens are identical with, or structurally related to, the O-antigens of other bacteria, including *S. enterica* (serogroups O21, O22, O24, O38), *E. coli* (O23, O35, *C. rodentium* ATCC 51459), *Klebsiella pneumoniae* (O28, O39), *Hafnia alvei* (O16, O41) and *Eubacterium sabbureum* (O32) [78]. The main

C. youngae O1 [79]	4)Rha(α1-3)Man(β1-4)Man(β1-
	$\operatorname{Rib}(\alpha 1-4)$
C. youngae O2, O25,	4)Rha(α1-3)Man(β1-4)Rha(β1-
C. werkmanii O20 [80]	Xylf(a1-4)
C. youngae O3 [78]	4)Man(α1-3)Rha(β1-4)Rha(β1-
C. youngae O4, O36,	2)4daraHex(β1-
C. werkmanii O27 [78]	
C. braakii OS, Citrobacter sp. PCM 1487 [78]	$6)GlcNAc(\alpha 1-4)GalNAc(\alpha 1-4)G$
	4daraHex(\$1-3)
C. braakii 06 [81]	3) Fuc(α 1-3) LRha2Ac(β 1-3) Fuc(α 1
C har shi 07 (DOM 1502) [92]	$4 \text{daraHex}(\alpha 1-4)^{\Box}$
C. braakii O7 (PCM 1503) [82]	4)Man(α 1-3)Kha(β 1-4)Kha(β 1-
C harder 07 (DOM 1520) [79]	
C. braakii O/ (PCM 1532) [78]	3)Man(α 1-3)Man(α 1-2)Man(α 1-2)Man(α 1-2)Man(α 1-
C. heredail 08 [79]	
C. braakii O8 [78]	3)Rha(α 1-3)Rha(α 1-2)Rha(β 1-
C ====================================	
C. gillenii 09 (PCM 1537) [78]	3)Rha4NAc(α 1-2)Rha4NAc(α 1-2)Rha4NAc(α 1-3)Rha4NAc2Ac(α 1-
	and 2)Rha4NAc(a1-
C. youngae O9 (PCM 1538) [83]	2)Rha4NAc(α1- and 3)Rha4NAc(α1-3)Rha4NAc(β1-
C. gillenii O11(PCM 1540) [84]	3)Man(β 1-4)Glcp(β 1-3)FucNAc4Ac(α 1-4)GalNAc(α 1-
	L(2-1β)GlcNAc Glc(α1-6)
C. gillenii O12 (PCM 1542) [78]	6)GlcN(R3Hb)(β1-3)GalNAc(α1-3)GalNAc(β1-
	Glc(\alpha1-6) \L(4-1\alpha)GlcNAc
C. gillenii O12 (PCM 1544) [78]	3) LRha2Ac(β 1-4)GlcNAc(β 1-6)Gal(α 1-
	$GlcNAc(\beta 1-3)$
C. werkmanii O14 [85]	4)Glc6(P1Gro)(β1-3)GlcNAc-(β1-
	$GlcNAc(\beta 1-2)^{j} \qquad \qquad \downarrow (6-1\alpha)Glc$
C. youngae O16 [78]	6)Gal(β 1-4)GalNAc3(P 1Gro)(β 1-4)Glc(β 1-3)Gal p NAc(β 1-
	$\operatorname{Glc}(\alpha 1-2)^{j} [(6-1\alpha)Gal]$
C. werkmanii O21 [78]	6)Man $3Ac(\alpha 1-2)$ Man($\alpha 1-2$)Man($\alpha 1-3$)GlcNAc($\alpha 1-1$
	Glc(a1-3)
C. freundii O22 [86]	2)Man(α 1-4)LRha(α 1-3)Gal(α 1-
	L(3-1α)Abe
C. freundii O23 [78]	4)Man(α1-2)Man(α1-2)Man(β1-3)GalNAc(α1-
C. werkmanii O24 [78]	4)GlcA(β 1-4)LFuc3Ac(α 1-3)Ribf(β 1-4)Gal(β 1-3)GlcNAc(β 1-
<i>a</i>	LFuc(α 1-2)J
C. werkmanii 026 [78]	3)ManNAc(β1-4)Glc(β1-
G. L. L. 000 1701	Glc(a1-2)
C. braakii 028 [78]	$= 2) \operatorname{Rib}_{f}(\beta 1-3) \operatorname{LRha}(\alpha 1$
C. braakii 029, 030 [78]	3)ManNAc(β1-4)Glc(β1-
C. youngae 032 [78]	$2)LGroA(1-3)Fuc3N2Ac(\alpha 1-2)LGroA(1$
C. braakii O35 [78]	2)Gal(β1-3)LFucNAc(α1-3)GlcNAc(β1-
C. braakii 037 [73]	7)Neu3Ac(α2-3)LFucNAm(α1-3)GlcNAc6Ac(β1-

 Table 3.4
 Structures of Citrobacter OPSs

(continued)

C. werkmanii O38 [78]	4)LRha(β 1-2)Man(α 1-2)Man(α 1-3)Gal(β 1- $\lfloor (3-1\alpha)Abe4Ac \qquad Glc(\alpha 1-2) \rfloor$
C. freundii O39 [87]	3)Gal6(PEtN)(β1-3)Gal(α1- and 3)Galf(β1-3)Gal(α1-
C. freundii O41 [78]	2)Glc(β 1-2)Fuc3N(R3Hb)(β 1-6)GlcNAc(α 1-4)Gal(β 1-3)GalNAc(β 1-Glc(α 1-2)
Citrobacter sp. 396 ^a [78]	$\begin{array}{c} 2) Man(\beta 1-2) Man(\beta 1-2) Man(\beta 1-2) Man(\beta 1-3) Glc NAc(\alpha 1-2) \\ Abe 2Ac(\alpha 1-3) \\ \ \ \ \ \ \ \ \ \ \ \ \ \$
C. sedlakii NRCC 6070, C. freundii OCU 158 [78]	2)Rha4NAc(α1-3)LFuc(α1-4)Glc(β1-3)GalNAc(α1-
C. freundii NRCC 6052 [78]	2)Rha(α1-3)Rha(β1-4)Glc(β1-
C. rodentium ATCC 51459 [78]	3)GlcNAc(α1-P-6)Glc(α1-2)Glc(β1-3)GlcNAc(β1- (4-1β)LRha

Table 3.4 (continued)

^aThe structure was established by older methods and requires reinvestigation.

E. ictaluri MT 104 [88]	4)Gal(β1-4)Glc(α1-4)GalNAc(α1-3)GalNAc(β1-
E. tarda MT 108 [89]	4)GalNAc(β1-3)Gal(α1-4)LRha(α1-3)GlcNAc(β1-
	(3-1a)GalA6LThr
E. tarda 1145, 1151 [90]	2)Man(α1-4)LRha(α1-3)Gal(α1-
	$(3-1\alpha)Abe 2Ac$
E. tarda 1153 [90]	4)GalA6(GroN)(α1-4)Gal(α1-3)GalA(α1-3)GlcNAc(β-

Table 3.5 Structures of Edwardsiella OPSs

chain of *C. braakii* O7 (PCM 1532) has the same structure as the linear mannan of *E. coli* O9, *K. pneumoniae* O3, and *H. alvei* PCM 1223. *C. sedlakii* NRCC 6070 and *C. freundii* OCU 158 share the OPS with *S. enterica* O30 and *E. coli* O157, and are serologically related also to some other bacteria whose OPSs contain various *N*-acyl derivatives of Rha4N.

Edwardsiella are occasional pathogens of humans; *E. tarda* can cause gastroenteritis and extraintestinal infections. The acidic OPS of *E. tarda* MT 108 includes an amide of GalA with L-threonine, and that of strain 1153 contains both GalA and its amide with 2-amino-2-deoxyglycerol (GroN) (Table 3.5). The OPS of strains 1145 and 1151 has the same carbohydrate structure as those of *S. enterica* O4 and *C. freundii* O22.

Escherichia, Shigella

Escherichia coli is a common component of the normal gut flora but certain strains also cause diarrhea, gastroenteritis, urinary tract infections and neonatal meningitis. *E. coli* O157 and several other virulent strains cause hemorrhagic colitis and hemolytic uremic syndrome. Strains of *Shigella*, mainly *S. dysenteriae*, *S. flexneri*, and *S. sonnei*, are causative agents of shigellosis (bacillar dysentery). The two genera are closely related, and genetically most *Shigella* strains are clones of *E. coli*. The

complete O-antigen structures have been determined for all 46 *Shigella* serotypes and a majority of about 180 *E. coli* O-serogroups. Those of *S. dysenteriae*, *S. boydii* and *S. sonnei* [91] as well as most known *E. coli* OPS structures [92] have been summarized recently. The latter are also periodically updated in the *E. coli* O-antigens database (ECODAB) at http://www.casper.organ.su.se/ECODAB/. Therefore, the OPS structures of *E. coli* and *Shigella* species mentioned above are not shown here.

The OPSs of most *E. coli* and *Shigella* have linear or branched tri- to hexasaccharide O-units; less common are disaccharide O-units and homopolysaccharides. Almost all Shigella OPSs (except for most S. flexneri types, S. boydii type 18 and S. dysenteriae type 1) and many E. coli OPSs are acidic due to the presence of hexuronic acids, including such uncommon as LIdoA (E. coli O112ab), LAltNAcA (S. sonnei) and ManNAc3NAcA (E. coli O180), nonulosonic acids (Neu5Ac, N-acyl derivatives of 5,7-diamino-3,5,7,9-tetradeoxynon-2ulosonic acids) and acidic non-sugar components, such as lactic, glyceric, pyruvic acids, amino acids or phosphate. Several OPSs possess glycerol or ribitol teichoic acid-like structures. Other constituent sugars rarely occurring in nature are colitose (E. coli O55 and O111), 6-deoxy-D-manno-heptose in E. coli O52, *D-threo*-pentulose (xylulose) in *E. coli* O97, *N*-acyl derivatives of various 6-deoxyamino and 6-deoxydiamino sugars, including LRhaN3N (E. coli O109 and O119) and FucN4N (S. sonnei). In S. sonnei and all other OPSs where FucN4N is present, it is 2-N-acetylated and has a free amino group at position 4. About half of *Shigella* serotypes have identical or almost identical OPS structures with E. coli [91]. Many other E. coli strains share OPSs with various bacteria, such as Salmonella, Citrobacter, Klebsiella, Serratia, Hafnia, Yersinia (see published review [92] and the corresponding sections in this chapter).

The OPSs structures of two other *Escherichia* species, *E. hermannii* and *E. albertii*, have been established. A group of *E. hermannii* strains produce homopolymers of Rha4NAc differing in the position of substitution of one of the sugar residues in the pentasaccharide O-units (Table 3.6).

The neutral OPSs of *S. flexneri* types 1–5, X and Y as well as newly proposed types 7a and 7b possess a common basic structure, and a diversity of the O-antigen forms depends on prophage-encoded glucosylation or/and O-acetylation at different positions of the basic glycan (Table 3.7). These serotype-converting modifications add new and may mask existing antigenic determinants, and strains with

E. hermannii ATCC 33650,	2)Rha(α1-3)Rha(β1-4)Glc(β1-
33652 [93]	-(3-1α)Gal
E. hermannii ATCC 33651 [94]	3)Rha24c(β1-
E. hermannii NRCC 4262 [95]	3)Rha4NAc(α1-2)Rha4NAc(α1-2)Rha4NAc(α1-
	3)Rha4NAc(α1-2)Rha4NAc(α1-
E. hermannii NRCC 4297-4300	3)Rha4NAc(α1-2)Rha4NAc(α1-3)Rha4NAc(α1-
[95]	3)Rha4NAc(α1-2)Rha4NAc(α1-
E. albertii (former Hafnia alvei	3)Gal(β1-6)Galf(β1-3)GalNAc(β1-
10457) [96]	(6-2α)Neu5Ac

Table 3.6 Structures of E. hermanii and E. albertii OPSs

1a [99]	2)LRha3, $4Ac(\alpha 1-2)$ LRha($\alpha 1-3$)LRha($\alpha 1-3$)GlcNAc($\beta 1-$
	$\operatorname{Glc}(\alpha 1-4)$
1b [99]	2)LRha3, $4Ac(\alpha 1-2)$ LRha($\alpha 1-3$)LRha2 $Ac(\alpha 1-3)$ GlcNAc($\beta 1-$
	Glc(a1-4)
2a [99]	2)LRha3,4Ac(α 1-2)LRha(α 1-3)LRha(α 1-3)GlcNAc6Ac(β 1-
	Glc(a1-4)
2b [100]	2) $LRha(\alpha 1-2)LRha(\alpha 1-3)LRha(\alpha 1-3)GlcNAc(\beta 1-$
1	$\lfloor (3-1\alpha) \text{Glc} \text{Glc}(\alpha 1-4) \rfloor$
3a [74]	2)LRha(α 1-2)LRha(α 1-3)LRha2Ac(α 1-3)GlcNAc6Ac(β 1-
	(3-1a)Glc
3b [100]	2)LRha(α1-2)LRha(α1-3)LRha2Ac(α1-3)GlcNAc(β1-
4a ^a [101]	2)LRha3(PEtN)(α1-2)LRha(α1-3)LRha(α1-3)GlcNAc(β1-
	Glc(a1-6)
4b [100]	2)LRha(α 1-2)LRha(α 1-3)LRha2Ac(α 1-3)GlcNAc(β 1-
	Glc(\alpha1-6)
5a [98]	2)LRha3,4Ac(α 1-2)LRha(α 1-3)LRha(α 1-3)GlcNAc(β 1-
	(3-1α)Glc
5b [102]	2) $LRha(\alpha 1-2)LRha(\alpha 1-3)LRha(\alpha 1-3)GlcNAc(\beta 1-$
	L(3-1α)Glc L(3-1α)Glc
X [102]	2) $LRha(\alpha 1-2)LRha(\alpha 1-3)LRha(\alpha 1-3)GlcNAc(\beta 1-$
	(3-1a)Glc
Y [74]	2)LRha3,4Ac(α 1-2)LRha(α 1-3)LRha(α 1-3)GlcNAc6Ac(β 1-
6, 6a ^b [74]	2)LRha3,4Ac(α1-2)LRha(α1-4)GalpA(β1-3)GalNAc(β1-
7a [103]	2)LRha(α 1-2)LRha(α 1-3)LRha(α 1-3)GlcNAc(β 1-
	$\operatorname{Glc}(\alpha 1-2)\operatorname{Glc}(\alpha 1-4)^{J}$
7b [103]	2)LRha(α 1-2)LRha(α 1-3)LRha2Ac(α 1-3)GlcNAc(β 1-
	$Glc(\alpha 1-2)Glc(\alpha 1-4)^{\perp}$

Table 3.7 Structures of S. flexneri OPSs

^aType 4a strains may lack phosphorylation.

^bTypes 6 and 6a differ only in the degree of O-acetylation.

glycosylated O-antigens are increased in virulence [97]. *S. flexneri* types 6 and 6a have a distinct acidic OPSs but share a 2)LRha(α 1-2)LRha(α 1- disaccharide fragment with the other serotypes. Recently, a phosphorylated variant of the type 4a OPS has been found. The OPSs of *S. flexneri* types 4b and 5a are shared by *E. coli* O129 and O135, respectively [98].

Klebsiella, Raoultella, Serratia

Klebsiella pneumoniae is a common cause of nosocomial infections. Outside the hospital, these bacteria are often responsible of pneumonia and urinary tract

01 0411 100	
01, 06 [1,104]	3)Gal(α 1-3)Galf(β 1- and 3)Gal(β 1-3)Gal(α 1-
O2a, 2a,b [104,106]	3)Gal(α1-3)Galf(β1-
O2a,c [104,106]	3)Gal(α 1-3)Galf(β 1- and 5)Galf(β 1-3)GlcNAc(β 1-
O2a,e, O2a,e,h, O9 ^a [107,108]	3)Gal(α1-3)Gal/(β1-
	$Gal(\alpha 1-2)^{-1}$
O2a,f,g [108]	3)Gal(α1-3)Galf(β1-
	$\operatorname{Gal}(\alpha 1-4)$
O3 [1,104]	2)Man(1-2)Man(1-2)Man(1-3)Man(1-3)Man(1-
04, 011 [1,104]	4)Gal(α1-2)Ribf(β1-
O5 [1,104]	3)Man(β1-2)Man(α1-2)Man(α1-
07 [1]	2)LRha(α1-2)Ribf(β1-3)LRha(α1-3)LRha(α1-
O8 [109]	3)Gal(α1-3)Galf2,6Ac(β1- and 3)Gal(β1-3)Gal(α1-
012 [1,104]	3)GlcNAc(β1-4)LRha(α1-
22535 [110]	3)LRha(1-3)LRha(1-2)LRha(1-2)LRha(1-2)LRha(1-
i28/94 [111]	4)Glc(α1-3)LRha(α1-

Table 3.8 Structures of K. pneumoniae OPSs

^aSerotypes O2a,e, O2a,e,h and O9 differ in the degree of galactosylation and O-acetylation at unknown position.

infections. Their O-antigens are all neutral and many are linear. The OPSs of serogroups O1, O2 and O8 share a 3)Gal(α 1-3)Gal/(β - chain called galactan I, and are serologically related (Table 3.8). The distal end of this chain may bear another homoglycan (galactan II in case of O1 and O8). The OPSs of some other serogroups are homopolysaccharides (mannans or an L-rhamnan) too. The O4 and O12 antigens are terminated with an α - or β -linked residue of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) [104], and the O5-mannan with 3-O-methylated Man [1]. The terminating group in the O3-mannan is a methyl group too but it is linked presumably via a phosphate group rather than directly to a mannose residue [105]. The OPSs are linked to the core OS through a β -GlcNAc primer. In serogroups O3 and O5, a 3)Man(α 1-3)Man(α 1-3)- disaccharide bridge (so called adaptor) is located between the OPS and the primer [104]. The O-antigens of *K. pneumoniae* O3, O4 and O5 are shared by *E. coli* O9, O20a,b and O8, respectively [92]. The O5 antigen is shared by *Burkholderia cepacia* O2 and E (see below) and *S. marcescens* O28. *K. pneumoniae* O10 has been reclassified as *Enterobacter* sp.

Raoultella (former *Klebsiella*) are isolated from plants, soil and water. *R. terrigena* ATCC 33257 has the same OPS structure as *K. pneumoniae* O12 [112], and the OPS of another *R. terrigena* strain is acidic due to the presence of a pyruvic acid acetal and has a unique structure [113]:

2)Man4,6Spyr(β1-3)ManNAc(α1-3)LRha(β1-4)GlcNAc(α1-

Serratia marcescens is a widely distributed environmental bacterium, which can causes outbreaks of infection, and occasionally death, in hospitalized patients. Their OPSs are neutral and many of them are similar to each other (for structures

see review [114]). Rather common are disaccharide O-units containing usual sugars (Glc, Gal, LRha, GlcNAc, GalNAc), which are occasionally O-acetylated [114]. The O14 antigen has the same structure as that of *P. aeruginosa* O15 and *B. cepacia* O3, whereas the O2 antigen is shared by *H. alvei* 38. The O4 antigen is an O-acetylated variant of the OPS of *K. pneumoniae* i28/94. *S. marcescens* O19 antigen is composed of two separate blocks of disaccharide O-units; the shorter chain is proximal to the core OS and shares the O-unit with *K. pneumoniae* O12, and the longer distal chain differs in substitution of LRha (at position 3 rather than 4) and is terminated with β -Kdo [115]. The OPS of *S. plymuthica* S90/4625 consists of the same two galactan blocks as *K. pneumoniae* O1 but is O-acetylated at unknown position [116].

Hafnia

Strains of *H. alvei* are isolated from natural environments and also hospital specimens. A serotyping scheme including 39 O-groups has been proposed for *H. alvei* strains but not correlated with known O-antigen structures [117]. In addition to common monosaccharides, Rib, LFucN, Qui3N, Qui4N are components of several *H. alvei* OPSs, and single OPSs include LFuc, 6dTal, ManN, Fuc3N and Neu. Amino sugars are usually N-acetylated but several bear an (*R*)-3-hydroxybutanoyl group; in strain 1204, Qui3NFo is present. Most OPSs are acidic, and many are phosphorylated. Several of the latter possess teichoic acid-like structures with glycerol or, in strain 1191, a unique L-arabinitol component; the others have a phosphate bridge between the O-units or are decorated with glycerol 1-phosphate or ethanolamine phosphate. The OPS of strain 1206 is the only known glycan that contains D-allotreonine amide-linked to GalA. The O-antigen of strain 2 has the largest octasaccharide O-unit, and that of strain 1189 consists of hexa-, hepta- and octasaccharde O-units owing to non-stoichiometric glucosylation at two sites.

There are two groups of strains with the O-antigens that are structurally and serologically related to strains 1187 and 1199 (Table 3.9). The OPSs of each group have the same main chain but differ in the patterns of glucosylation or/and O-acetylation. It has been suggested to combine these strains in two serogroups and to place the remaining strains having the strain-specific O-antigens to a separate serogroup each [117]. Several O-antigens of *H. alvei* are shared by other bacteria: the hexosaminoglycan of strain 38 by *S. marcescens* O2, the mannan of strain 1223 by *E. coli* O9 and *K. pneumoniae* O3, and two galactans of strain Y166/91 by *K. pneumoniae* O1.

Cronobacter, Enterobacter, Pantoea

Cronobacter species (former *Enterobacter sakazakii*) are food-borne pathogens causing bacteremia, necrotizing enterocolitis and neonatal meningitis. Most OPSs of the genus are acidic due to the presence of hexuronic acids or, in *C. malonaticus,* Kdo (Table 3.10). The latter is a common constituent of the LPS core OS and occur in other non-repetitive LPS domains but is uncommon in O-units. The only neutral OPS is that of *C. sakazakii* ZORB A 741, which contains a tyvelose side chain. The O-antigens of *C. sakazakii* O1 and HPB 3290 have the same composition, including

1105 (115)	
1187 [117]	$2)Glc(\alpha 1-P-6)GlcN(R3Hb)(\alpha 1-4)GalNAc(\alpha 1-3)GalNAc(\beta 1-2)GalNAc(\beta 1-$
744, 1194, 1219,	2)Glc(α 1- <i>P</i> -6)GlcN(<i>R</i> 3Hb)(α 1-4)GalNAc(α 1-3)GalNAc(β 1-
[117.118]	$Glc(\alpha 1-6)^{\perp}$
537 (ATCC	2)Glc(α1-P-6)GlcN(R3Hb)3Ac(α1-4)GalNAc(α1-3)GalNAc(β1-
13337) [117]	$\operatorname{Glc}(\alpha 1-6)^{\perp}$
1199 [117]	3)Qui4NAc(β1-3)Gro(1-P-3)Gal(β1-3)GlcNAc6Ac(α1-
	$GleNAc6Ac(\beta 1-2)$
1200, 1203,	3)Qui4NAc(β1-3)Gro(1-P-3)Gal(β1-3)GlcNAc6Ac(α1-
1205 ^a [117,119]	GlcNAc3, $6Ac(\beta 1-2) \downarrow \lfloor (4-1\alpha) Glc \rfloor$
2 [117]	4)Neu5Ac(α2-6)Glc(α1-6)Gal(β1-3)GalNAc(β1-
	$\operatorname{Glc}(\alpha 1-4)\operatorname{Gal}(\beta 1-6)\operatorname{Glc}(\beta 1-3)$ (6-1 α)Glc
23 [117]	3)Qui4NAc(β 1-3)6dTal4Ac(α 1-3)LFuc(α 1-6)Glc(α 1-P-3)GlcNAc(α 1-
32 [120]	4)GalA2,3Ac(α1-2)LRha(α1-4)Gal(β1-3)GalNAc(β1-4)GlcNAc(α1-
38 [117]	4)ManNAc(β1-4)GlcNAc(α1-
39 [117]	3)Gal(β1-4)Glc(β1-3)GalNAc(β1-
	$Gal(\beta 1-4)$ (2-1 β)GlcNAc
1185 ⁶ [121]	2)Qui3N(R3Hb)(β1-6)Glc(α1-4)GlcA2Ac(β1-3)GlcNAc(α1-
	$\operatorname{Glc}(\alpha 1-4) \rfloor$
1188 [117]	4)GlcA(β1-2)Man(α1-4)Gal(β1-3)GlcNAc(β1-
	$LRha_{2,3,4Ac}(\alpha 1-3)$
1189 [122]	6)Glc(α1-4)GlcA(β1-4)GalNAc(β1-3)Gal(α1-3)GalNAc(β1-
	$\lfloor (4-1\alpha)Glc$ $\lfloor (6-1\alpha)Glc(2-1\alpha)Glc$
1190 [117]	3)LRha(α1-2)Ribf(β1-4)GalA(α1-3)GlcNAc(β1-
	$Galf(\alpha 1-2) LRha(\alpha 1-2)$ (5-1 α)Glc
1191 ^c [123]	4)Glc(β1-1)LAra-ol2Ac(5-P-3)Gal(β1-3)GalNAc(β1-
	GlcNAc(β 1-2) $\lfloor (4-1\alpha)$ Glc
1192 ⁶ [124]	3)LRha(α1-3)LRha(β1-4)LRha(α1-3)GlcNAc(β1-
	$(2-1\alpha)$ GlcA2Ac(4-1 β)Ribf
1195 [125]	3) LFucNAc(α 1-4)Glc(α 1-P-4)Glc(α 1-3) LFucNAc(α 1-3)GlcNAc(α 1-
	GlcNAc(a1-4)
1196 [126]	2)Gal(β1-6)Glc(α1-6)GlcNAc(α1-4)GalA(α1-3)GlcNAc(β1-
1204 ⁶ [127]	$2) Qui 3 NFo (\beta 1-3) Gal NAc (\alpha 1-4) Glc A 3 A c (\alpha 1-3) Man (\alpha 1-2) Man (\alpha 1-3) Glc NAc (\beta 1-3) Man (\alpha 1-3) Glc NAc (\beta 1-3) Man (\alpha 1-3) Glc NAc (\beta 1-3) Man (\alpha $
1206 [117]	4)GalA6DaThr(α1-2)LRha(α1-2)Ribf(β1-4)Gal(β1-3)GalNAc(β1-
1207 ⁶ [128]	4)GalNAc3(P1Gro)(β1-3)Gal(α1-4)Gal(β1-3)GalNAc(β1-
	Glc(\alpha1-6)
1209 [117]	3)Gal(β1-4)Glc(α1-4)GlcA(β1-3)GalNAc(β1-
	L(4-1α)LRha
1210 [117]	3)GlcNAc(α1-P-6)Gal(α1-4)Gal(β1-3)GlcNAc(β1-
	$\lfloor (4-1\beta)LRha$
1211 ^d [129]	2)Gle(β 1-2)Fue3N(R3Hb)4Ae(β 1-6)GleNAe(α 1-4)GalNAe(α 1-3)GleNAe(β 1- Gle(β 1-3)
1216 [117]	4)Qui3N(R3Hb)(α1-4)Gal6Ac(β1-4)GlcNAc(β1-4)GlcA(β1-3)GlcNAc(β1-

Table 3.9 Structures of H. alvei OPSs

(continued)

1220 [117]	3)Gro(1- <i>P</i> -6)Glc(β 1-4)LFucNAc(α 1-3)GlcNAc(β 1- Glc(α 1-6)Gal(α 1-3) Glc(α 1-6) Glc(α 1-6)	
1222 [130]	2)LRha(α 1-2)LRha3(<i>PEtN</i>)4Ac(α 1-2)Rif(β 1-4)Gal(α 1-3)GlcNAc(α 1- \lfloor (3-1 β)Galf	-
1223 [131]	2)Man(α1-2)Man(α1-2)Man(α1-3)Man(α1-3)Man(α1-	-
1529 [132]	2)LRha(α 1-3)LRha(α 1-4)GalA(α 1-3)GlcNAc6 <i>Ac</i> (β 1- L (3-1 α)LRha	1
1546 [133]	6)Glc3Ac(α1-4)GlcA(β1-4)GalNAc3Ac(β1-3)Gal(α1-3)GalNAc(β1-	1
Y166/91 [134]	3)Gal(β1-3)Gal(α1- and 3)Gal(α1-3)Galf(β1-	1
481-L [135]	4)GalNAc(α 1- <i>P</i> -6)Gal(β 1-3)GalNAc(β 1-4)GlcNAc(α 1- \lfloor (3-1 β)Glc Glc(α 1-4) \rfloor	

Table 3.9 (continued)

^aThe OPS lacks *O*-acetyl groups at position 6 of α -GlcNAc in strain 1205, position 6 of β -GlcNAc in strain 1203 or at both positions in strain 1200.

^bThe OPS is non-stoichiometrically O-acetylated at unknown position.

^cArabinitol may be partially replaced by xylitol (~3:1).

^dIn ~10% α -GlcN, the *N*-acetyl group is replaced by a 3-hydroxybutanoyl group.

C. malonaticus [136]	4)Kdo(β2-6)Glc(β1-6)Gal(β1-3)GalNAc(β1-
	GleNAc(β1-2)
C. muytjensii [137]	4)Qui3NAc(α1-3)LRha(α1-6)GlcNAc(α1-4)GlcA(β1-3)GalNAc(α1-
C. sakazakii O1 [138]	2)Qui3N(LAlaAc)(β1-6)Glc(β1-3)GalNAc(α1-
A CONTRACTORIST PROCESSOR & CONTRACTOR AND A CONTRACTORIST	$\operatorname{Glc}(\alpha 1-4)\operatorname{GlcA}(\alpha 1-4)$
C. sakazakii HPB 3290 [139]	2)Qui3N(LAlaAc)(β1-6)Glc(α1-3)GlcA(β1-3)GalNAc(α1-
	$\operatorname{Glc}(\alpha 1-2)^{\perp}$
C. sakazakii O2 ^a [140],	3)LRha4Ac(α1-4)Glc(α1-2)LRha(α1-3)GlcNAc(β1-
C. sakazakii HPB 2855 [141]	$(2-1\alpha)$ GalA(4-1 α)LRha2, 3, 4Ac
C. sakazakii 767 [142]	3)LRha4Ac(α1-4)Glc(α1-2)LRha(α1-3)GlcNAc(β1-
	$(2-1\alpha)$ GalA $(4-1\alpha)$ LRha $(4-1\alpha)$ Glc
C. sakazakii ZORB A 741	3)LRha(α1-3)Gal6Ac(α1-3)Gal(α1-
[143]	$Tyv(\alpha 1-2)$

 Table 3.10
 Structures of Chronobacter OPSs

^aIn the O2 antigen, LRha in the main chain is not acetylated.

an *N*-acetyl-L-alanyl derivative of Qui3N, but a different O-unit topology and sugar sequence. *C. sakazakii* O2 and two more strains possess the same main chain and a disaccharide side-chain but differ in the pattern of O-acetylation and the presence of a lateral Glc in strain 767.

Enterobacter cloacae is sometimes associated with urinary tract and respiratory tract infections. The structure has been established for the O10 antigen [144]:

```
6)Man(\alpha1-2)Man(\alpha1-2)Man(\beta1-3)FucNAc(\alpha1-Glc(\alpha1-4)
```

FL1 [145]	2)Rha(α1-2)Rha(β1-3)Rha(α1-2)Rha(α1-
62D ₁ ^a [146]	2)Qui3NAc(β 1-3)LRha(α 1-3)Gal(β 1-3)FucNAc(α 1- Gal(α 1-6) ^{\rfloor}
CIP 55.49 [147]	3)LFucNAc(α 1-3)LFucNAc(α 1-3)GlcNAc(β 1- Glc(α 1-2)LRha(α 1-6)

Table 3.11 Structures of P. agglomerans OPSs

^aStrain was originally classified as *E. coli*, then as *Erwinia herbicola*.

The OPS of an *Enterobacter* sp. strain, formerly classified as *K*. *pneumoniae* O10, is a linear riborhamnan terminated with 3-O-methylated LRha [1]:

 $3) LRha(\alpha 1-3) Ribf(\beta 1-4) R$

Pantoea (former *Enterobacter*) *agglomerans* is commonly isolated from plant surfaces, seeds, fruits, animal or human feces, and is known to causing wound, blood, and urinary tract infections. The OPSs of this species studied are neutral and enriched in 6-deoxyhexoses (Table 3.11).

Proteus, Providencia, Morganella

O-antigen structures have been established for all 76 known Proteus O-serogroups and more than half of 61 Providencia O-serogroups. The former have been summarized in a recent review [148], and the OPS structures of *Providencia* are shown below. The O-antigens of both genera possess some peculiar features in common. Most of them are acidic due to the presence of hexuronic acids, including a rare isomer LAltA, nonulosonic acids: Kdo, pseudaminic acid (Pse) and 8-epilegionaminic acid (8eLeg), and non-sugar acids, such as carboxyl-linked amino acids, including stereoisomers of N^{ε} -(1-carboxyethyl)-L-lysine, N-linked dicarboxylic acids [malonic, succinic, aspartic acids, N-(1-carboxyethyl)alanine], ether-linked hydroxy acids (lactic and 2,4-dihydroxypentanoic acids) and a pyruvic acid acetal. Phosphate-linked non-sugar groups are both occurring in other bacterial OPS: ethanolamine, glycerol and ribitol, which are found mainly in *Proteus*, and unique: N-(1-carboxyethyl)ethanolamine, choline and D-glyceramide in Proteus mirabilis O14, O18 and Providencia alcalifaciens O22, respectively. Man and LFuc have been detected only in *Providencia* but some other monosaccharides (LRha, L6dTal, various 6-deoxyamino sugars) are common for both genera. LQui present in the OPS of *P. stuartii* O44 is a rare component of O-antigens. From diamino sugars, LRhaN3N has been found in Proteus penneri O66, whereas FucN4N in both Proteus and Providencia. The main chain of the OPS of P. alcalifaciens O6 has the same structure as hyaluronic acid. The O-unit of P. alcalifaciens O38 and O45 contains D-alanine linked to the carboxyl group of N-acetylmuramic acid and thus represents a fragment of the bacterial cell-wall peptidoglycan (Table 3.12).

$ \begin{bmatrix} l_{(6-1\beta)QuidN(4LAspAc)} \\ P. alcalifaciens O5 [150] 4QuidNAc(\beta1-3)Gal(\beta1-3)GlcNAc(\beta1- + 4)GlcA(\beta1-3)GlcNAc(\beta1 4)GlcA(\beta1-3)GlcNAc(\beta1 4)GlcA(\beta1-3)GlcNAc(\beta1 4)GlcA(\beta1-3)GlcNAc(\beta1 4)GlcA(\beta1-3)GlcA(a(a1-4)GlcNAc(a1 7)SlcNAc(a(a1-4)GlcNAc(a1 7)SlcNAc(a(a1-4)GlcNAc(a1 7)SlcNAc(a(a1-4)GlcNAc(a1 7)SlcNAc(a(a1-4)GlcNAc(a1 7)SlcNAc(a(a1-4)GlcNAc(a1 7)SlcNAc(a(a1 7)S$	P. stuartii O4 [149]	3)Gal(β1-6)GlcNAc(β1-6)Gal(β1-3)GlcNAc(β1-
P. alcalifaciens OS [150] 4)Qui3NAc(β1-3)Gal(α1-3)Gal(β1-3)GlcNAc(β1- P. alcalifaciens OG [151] 4)GlcA(β1-3)GlcNAc(β1- Col(α1-2)Gal(β1-3)GlcNAc(β1-3)GlcA(α1-4)GlcNAc(α1- P. alcalifaciens OS ¹ [153] 3)GlcNAc4R(β1-3)GlcNAc(β1-3)GlcA(α1-4)GlcNAc(α1- GlcGlfaciens OS ¹ [153] 3)GlcNAc4R(β1-3)Gal(β1-2)Grc(1-P-3)FucNAc4N(β1- P. alcalifaciens OS [151] 4)Gal(β1-3)GalNAc(α1-4)GalNAc(α1-3)GalNAc(α1-3)GalNAc(α1- GlcGlfaciens OS [151] 4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-3)GalNAc(α1- F. rustigrami O14 3)GalA6(2SalaLys)(α1-4)Gal(β1-3)GalNAc(α1-3)GlcNAc(α1- [156,157] 6)GlcNAc3(βlac)(α1-3),Rha(β1-4)GlcNAc(β1- P. rustigrami O16 [158] 6)GlcNAc3(βlac)(α1-3),GlcNAc4(α[1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-4)GlcA(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(β1- P. alcalifaciens O12 [163] 8)GalA(α1-4)GalA(α(1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(β1- P. alcalifaciens O22 [164] 4)GalNAc3(β2DGrAAN)(β1-4)Gal(β1-3)GalNAc(β1- P. alcalifaciens O21 [163] 3)GalA(α(1-4)GicA(β1-3)GicNAc(β1- P. alcalifaciens O22 [164] 4)GalNAc3(β2DGrAAN)(β1-4)Gal(β1-3)GalNAc(β1- P. alcalifaciens O21 [161] 4)GicA(β1-3)GicNAc(β1- P. alcalifaciens O22 [164] 4)GalA(Ac3(β2DGrAAN)(β1-G)Gal(β1-6)GicA(β1-3)GalNAc		L(6-1β)Qui4N(4LAspAc)
P. alcalifaciens 06 [151] 4)GicA(β1-3)GicNA(β1-0) P. alcalifaciens 07 [152] 3)LRha2Ac(β1-4)GicNAc(β1-3)GicA(a1-4)GicNAc(a1-4)	P. alcalifaciens O5 [150]	4)Qui3NAc(β1-3)Gal(α1-3)Gal(β1-3)GlcNAc(β1-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P. alcalifaciens O6 [151]	4)GlcA(β1-3)GlcNAc(β1-
P. alcalifaciens O8* [152] 3), Rha2Ac(β1-4)GlcNAc(β1-3)GlcA(α1-4)GlcNAc(α1-4)GlcNAc(α1-4)GlcB(Ac(α1-3)GlnNAc(β1-4)GlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnG		$Col(\alpha 1-2)Gal(\beta 1-3)GlcNA(\beta 1-6)$
P. alcalifaciens O8* [153] 3)GleNAc4R(β1-3)Gal(β1-2)Gro(1-P-3)FucNAc4N(β1- P. alcalifaciens O9 [154] 2)Glc(β1-6)Gal(α1-6)GalNAc(α1-4)GalNAc(α1-3)GalNAc(α1-3)GalNAc(α1-3)GalNAc(α1-3)GalNAc(α1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-6)GlcNAc(α1-6)GlcNAc(α1-7)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-3)GalNAc(α1-7)Gal(β1-	P. alcalifaciens O7 [152]	3)LRha2Ac(β1-4)GlcNAc(β1-3)GlcA(α1-4)GlcNAc(α1-
P. alcalifaciens O9 [154] 2)Glc(β1-6)Gal(α1-6)GalNAc(α1-4)GalNAc(α1-3)GalNAc(α1- Glc(β1-3)] P. alcalifaciens O12 [155] 4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(β1- GlcNAc(β1-3)] P. nustigianii O14 3)GalA6(2SalaLys)(α1-4)GalNAc(α1-3)GlcNAc(α1- GlcNAc(β1-3)] P. nustigianii O16 [158] 6)GlcNAc3(Rlac)(α1-3)GlcNAc(α1-3)GlcNAc(α1- GlcNAc(β1-3)GlcNAc(β1-3)GlcNAc(α1- GlcAAc(β1-6)GlcNAc(β1-4)GlcA(β1-3)GalNAc(α1- P. alcalifaciens O19 P. alcalifaciens O19 2)Fuc3NAc4Ac(β1-3)GlcNAc(α1-4)GlcA(β1-3)GalNAc(α1- P. alcalifaciens O11 P. alcalifaciens O11 8)&eLeg5Ac7Ac(α2-4)GlcA(β1-4)GlcA(β1-3)GalNAc(α1- GlcAA(β1-4)Gla(α1-4)GalAAc(α1-4)Gal(β1-3)GalNAc(α1- P. alcalifaciens O21 P. alcalifaciens O21 8)&eLeg5Ac7Ac(α2-4)GlcA(β1-4)GlcA(β1-3)GalNAc(β1- L(4-10)Fuc3NFo P. alcalifaciens O22 1163] 3)GalA(α1-4)GalNAc(α1-4)Gal(β1-3)GalNAc(β1- L(4-10)Fuc3NFo P. alcalifaciens O22 1163] 4)GalNAc(β1-3)GlcNAc(β1- JC(4-10)GalA(2RalaLys) P. alcalifaciens O27 1167] 2)Qui4NFo(α1-4)GlcA(α1-3)GlcNAc(β1- J(4-10)GalA(2RalaLys) P. alcalifaciens O27 1167] 2)Qui4NFo(α1-4)GlcA(α1-3)GlcNAc(α1- JGlc(β1-4)J P. alcalifaciens O29 1169] 3)Gal(α1-4)GalNAc(α1-3)GlcNAc(α1- Glc(β1-4)J P. alcalifaciens O31 ¹⁷⁰ 2)Qui4NFo(β1-2)Rib(β1-4)GlcA(β1-3)GlcNAc(α1- Glc(β1-4)J	P. alcalifaciens O8 ^a [153]	3)GlcNAc4R(β1-3)Gal(β1-2)Gro(1-P-3)FucNAc4N(β1-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P. alcalifaciens O9 [154]	2)Glc(β1-6)Gal(α1-6)GalNAc(α1-4)GalNAc(α1-3)GalNAc(α1-
P. alcalifaciens O12 [155] 4)Gal(β I-3)GalNAc(α 1-4)Gal(β I-3)GalNAc(β I-3)GalNAc(β I-GleNAc(β I-GleNAc(β I-3)GleNAc(β I-GleNAc(β I-1)GalNAc(α I-3)GleNAc(α I-1)GalNAc(α I-3)GleNAc(β I-2)Fuc3NAc(α I-6)GleNAc(α I-4)GleA(β I-3)GalNAc(α I-1)GalNAc(α I-1)GalNAc(α I-3)GleNAc(α I-1)GalNAc(α I-1)GalNAc(α I-4)GalNAc(α I-4)GalA(α I-3)GalNAc(α I-2)GalAAc(α I-3)GalNAc(α I-2)GalA(α I-4)GalA(α I-4)GalA(α I-4)GalA(α I-3)GalNAc(α I-2)GalAAc(α I-3)GalNAc(α I-2)GalA(α I-4)GalA(α I-4)GalA(α I-3)GalAAc(α I-3)GalNAc(β I-2)CalA(α I-3)GalNAc(α I-3)GalNAc(β I-2)CalA(α I-3)GalAAc(α I-3)G		Glc(β1-3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P. alcalifaciens O12 [155]	4)Gal(β1-3)GalNAc(α1-4)Gal(β1-3)GalNAc(β1-
P. rustigianii O14 3)GalA6(2SalaLys)(α1-4)GalNAc(α1-3)GleNAc(α1- [156,157] P. rustigianii O16 [158] 6)GleNAc3(Rlac)(α1-3)LRha(β1-4)GleNAc(β1- P. stuartii O18 [159] 4)Qui3NAc(β1-6)GleNAc(α1-4)GlcA(β1-3)GalNAc(α1- P. alcalifaciens O19 2)Fuc3NAc4Ac(β1-3)GleNAc(α1-4)GlcA(β1-3)GleNAc(α1- P. alcalifaciens O19 2)Fuc3NAc4Ac(β1-3)GleNAc(α1-4)Gal(β1-3)GleNAc(α1- P. alcalifaciens O21 [163] 3)GalA(α1-4)GalNAc(α1-4)GalNAc(α1-3)GalNAc(β1- L(4-1α)Fuc3NFo 4)GalNAc6(β2CarochN) (β1-4)Gal(β1-3)FucNAc4N(β1- P. alcalifaciens O22 [164] 4)GalNAc6(β1-4)GlcA(β1-3)GleNAc(β1-6)Glc(β1-3)GalNAc(β1- P. alcalifaciens O25 [166] 6)GalNAc(β1-4)GlcA(β1-3)GleNAc(β1- P. alcalifaciens O27 [167] 2)Qui4NFo(α1-4)GlcA(α1-4)Glc(β1-3)GalNAc(β1- P. alcalifaciens O27 [167] 2)Qui4NFo(α1-3)GleNAc(β1- P. alcalifaciens O28 [168] 3)GleNAc(β1-3)LFuc(α1-3)GleNAc(β1- P. alcalifaciens O29 [169] 6)GleNAc(α1-3)GleNAc(β1- P. alcalifaciens O30 [170] 2)Qui4NFo(β1-2)Rib(β1-4)GlcA(β1-4)GlcA(β1-3)GleNAc(α1- P. alcalifaciens O31 [173] 3)Qui4N(4DAspAc)β1-6)GleNAc(α1-3)GleNAc(α1- P. alcalifaciens O32 [172] 6)GleNAc3(Slac)(α1-3)LFucNAc(α1-3)GleNAc(α1- P. alcalifaciens O32 [173] 3)Qui4N(4DAspAc)β1-6)GleNAc(α1-3)GleNAc(α1-		GlcNAc(β1-3) (2-1β)Glc(2-1β)GlcNAc
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	P. rustigianii O14	3)GalA6(2SalaLys)(α1-4)GalNAc(α1-3)GlcNAc(α1-
P. rustigianii O16 [158] 6)GleNAc3(Rlac)(α1-3)LRha(β1-4)GleNAc(β- P. stuartii O18 [159] 4)Qui3NAc(β1-6)GleNAc(α1-4)GlcA(β1-3)GlaNAc(α1- P. alcalifaciens O19 2)Fuc3NAc4Ac(β1-3)GleNAc4,6(Spyr)(α1-4)Gal(α1-4)Gal(β-3)GleNAc(β1- [160, 161] 2)Fuc3NAc4Ac(β1-3)GleNAc4,6(Spyr)(α1-4)Gal(α1-4)Gal(β-3)GleNAc(β1- P. alcalifaciens O21 3)GalA(α1-4)GalNAc(α1-4)GalNAc(α1-3)GalNAc(α1- P. alcalifaciens O22 1[64] 4)GalNAc3(P2DGroAN) (β1-4)Gal(β1-3)GleNAc(β1- L(4-1α)Fuc3NFo 4)GieA(c2RalaLys)(β1-6)Gal(β1-6)Gie(β1-3)GalNAc(β1- P. alcalifaciens O23 1[65] 3)GieA(c4(1-4)GieA(c4(1-4)GieA(c3(1-4)GieA(β1-3)GalNAc(β1- P. alcalifaciens O29 1[69] 6)GieNAc(α1-3)LFucNAc(α1-3)GieNAc(α1- B. alcalifaciens O30 1[70] 2)Qui4NFo(β1-2)Rib(β1-4)GieA(β1-3)GieNAc(β1- P. alcalifaciens O31 ⁶ 3)Gal(α-4)GalNAc(β1-3)GieNAc(α1- P. alcalifaciens O32 1[72] 6)GieNAc(α1-3)LFucNAc(α1-3)GieNAc(α1- P. alcalifaciens O35 ⁶ 3)Qui4N(4DAspAc)(β1-6)GieNA	[156,157]	
P. stuartii 018 [159] 4)Qui3NAc(β1-6)GlcNAc(α1-4)GlcA(β1-3)GlnAc(α1- P. alcalifaciens 019 2)Fuc3NAc4Ac(β1-3)GlcNAc4,6(5pyr)(α1-4)Glc(α1-4)Gal(β-3)GlcNAc(β1- [160, 161] 2)Fuc3NAc4Ac(β1-3)GlcNAc4,6(5pyr)(α1-4)GlcA(β1-3)GlcNAc(α1- P. alcalifaciens 021 [163] 3)GalA(α1-4)GalNAc(α1-4)GalNAc(α1-3)GalNAc(β1- L(4-1α)Fuc3NFo 2)Fuc3NAc4Ac(β1-2)GlcA(β1-4)GlcA(β1-3)GlcNAc(β1- P. alcalifaciens 022 [164] 4)GalNAc3(P2DGroAN) (β1-4)Gal(β1-3)FucNAc4N(β1- P. alcalifaciens 023 [165] 4)GlcA6(2FalaLys)(β1-6)Gal(β1-6)Glc(β1-3)GalNAc(β1- P. alcalifaciens 025 [166] 6)GalNAc(β1-4)GlcA(β1-3)GlcNAc(β1- P. alcalifaciens 027 [167] 2)Qui4NFo(α1-4)GlcA(α1-4)Glc(β1-3)GlcNAc(β1- P. alcalifaciens 027 [167] 2)Qui4NFo(β1-2)Rib(β1-4)GlcA(β1-3)GlcNAc(β1- J. alcalifaciens 029 [169] 6)GlcNAc(β1-3)LFucNAc(α1-3)GlcNAc(β1- P. alcalifaciens 029 [169] 6)GlcNAc(β1-2)Rib(β1-4)GlcA(β1-3)GlcNAc(β1- P. alcalifaciens 030 [170] 2)Qui4NFo(β1-2)Rib(β1-4)GlcA(β1-3)GlcNAc(β1- Man4R(β1-4)_ Man4R(β1-4)_ Man4R(β1-4)_ P. alcalifaciens 032 [173] 3)Qui4N(40AspAc)(β1-6)GlcNAc(β1-3)GlcNAc(α1- Man4R(β1-4)	P. rustigianii O16 [158]	6)GlcNAc3(Rlac)(α1-3)LRha(β1-4)GlcNAc(β-
P. alcalifaciens O19 2)Fuc3NAc4Ac(β1-3)GlcNAc4,6(Spyr)(α 1-4)Gal(α 1-4)Gal(β -3)GlcNAc(β 1- [160, 161] P. stuartii O20 [162] 8)8eLeg5Ac7Ac(α 2-4)GlcA(β 1-4)GalNAc(α 1-3)GlcNAc(α 1- P. alcalifaciens O21 [163] 3)GalA(α 1-4)GalNAc(α 1-4)GalNAc(α 1-3)GalNAc(β 1- P. alcalifaciens O22 [164] 4/GalNAc3(P2DGroAN) (β 1-4)Gal(β 1-3)FucNAc4N(β 1- P. alcalifaciens O25 [166] 6/GalNAc(β 1-4)GlcA(β 1-3)GlcNAc(β 1- P. alcalifaciens O25 [166] 6/GalNAc(β 1-4)GlcA(α 1-4)GlcA(α 1-3)GlcNAc(β 1- P. alcalifaciens O27 [167] 2)Qui4NFo(α 1-3)GlcNAc(β 1- P. alcalifaciens O28 [168] 3)GlcNAc(β 1-3),FucNAc(α 1-3)GlcNAc(β 1- P. alcalifaciens O29 [169] 6/GlcNAc(α 1-3),FucNAc(α 1-3)GlcNAc(β 1- Glc(β 1-2),FucNAc(α 1-3),GlcNAc(β 1- - P. alcalifaciens O30 [170] 2)Qui4NFo(β 1-2),FucNAc(α 1-3),GlcNAc(β 1- P. alcalifaciens O31 [170] 2)Qui4NFo(β 1-2),Rib(1-4),GlcA(β 1-4),GlcA(β 1-3),GlcNAc(α 1- Man4R(β 1-4) - - P. alcalifaciens O32 [172] 6)GlcNAc3(Slac)(α 1-3),LFucNAc(α 1-3),GlcNAc(α 1- Glc(β 1-4),L - - P. alcalifaciens O35 ⁶ 3)Gal(A(2+4)GlcA(β 1-3),GlcNAc(α 1- Glc(β 1-4),L - - P. alcalifaciens	P. stuartii O18 [159]	4)Qui3NAc(β1-6)GlcNAc(α1-4)GlcA(β1-3)GalNAc(α1-
[100, 161] P. stuartii O20 [162] 8)8eLeg5Ac7Ac(α2-4)GlcA(β1-4)GlcA(β1-3)GlcNAc(α1- P. alcalifaciens O21 [163] 3)GalA(α1-4)GalNAc(α1-4)GalNAc(α1-3)GalNAc(β1- P. alcalifaciens O22 [164] 4)GalNAc3(P2DGroAN) (β1-4)Gal(β1-3)FucNAc4N(β1- P. alcalifaciens O23 [165] 4)GlcA6(2RalaLys)(β1-6)Glc(β1-3)GalNAc(β1- P. alcalifaciens O25 [166] 6)GalNAc(β1-4)GlcA(β1-3)GlcNAc(β1- P. alcalifaciens O25 [167] 2)Qui4NFo(α1-4)GlcA(α1-4)Glc(β1-3)GalNAc6Ac(β1- P. alcalifaciens O27 [167] 2)Qui4NFo(α1-4)GlcA(α1-4)Glc(β1-3)GalNAc6Ac(β1- P. alcalifaciens O28 [168] 3)GlcNAc(β1-3)LFuc(α1-3)GlcNAc(β1- U(4-1α)Eu(3-1α)GlcA Glc(β1-4)J P. alcalifaciens O29 [169] 6)GlcNAc(α1-3)LFucNac(α1-3)GlcNAc(α1- Glc(β1-4)J 6)GlcNAc(α1-3)LFucNac(α1-3)GlcNAc(α1- P. alcalifaciens O30 [170] 2)Qui4NFo(β1-2)Rib(β1-4)GlcA(β1-3)GlcNAc(α1- Glc(β1-4)J 6)GlcNAc3(Slac)(α1-3)LFucNAc(α1-3)GlcNAc(α1- Glc(β1-4)J Man4R(β1-4)J P. alcalifaciens O32 [172] 6)GlcNAc3(β1-6)GlcNAc(α1-4)GlcA(β1-3)GlcNAc(α1- Glc(β1-4)J Glc(β1-4)LuC(α1-2)JMa(α1-2)LFuc(α1-2)Glc(β1-3)GlcNAc(α1- Glc(β1-4)J 4)GlcA(β1-4)UE(α(1-2))Glc(A(β1-3)GlcNAc(β1- P. alcalifaciens O35 ⁶ 4)GalNAc(α1-6)Glc(α1-4)GlcA(β1-3)Gl	P. alcalifaciens O19	$2) Fuc 3NAc 4Ac (\beta 1-3) Glc NAc 4, 6 (Spyr) (\alpha 1-4) Gal (\alpha 1-4) Gal (\beta -3) Glc NAc (\beta 1-3) G$
P. stuartii O20 [162] 8)8eLeg5Ac7Ac(α 2-4)GicA(β 1-4)GicA(β 1-3)GicNAc(α 1- P. alcalifaciens O21 [163] 3)GalA(α 1-4)GalNAc(α 1-4)GalNAc(α 1-3)GalNAc(β 1- L(4-1 α)Fue3NFo L(4-1 α)Fue3NFo P. alcalifaciens O22 [164] 4)GalNAc3(P2DGroAN) (β 1-4)Gal(β 1-3)GalNAc(β 1- P. alcalifaciens O22 [165] 4)GicA(2RalaLys)(β 1-6)Gal(β 1-3)GalNAc(β 1- P. alcalifaciens O25 [166] 6)GalNAc(β 1-3)LFuc(α 1-4)GicA(β 1-3)GalNAc(β 1- P. alcalifaciens O27 [167] 2)Qui4NFo(α 1-4)GicA(α 1-4)GicA(β 1-3)GalNAc(β 1- P. alcalifaciens O28 [168] 3)GicNAc(β 1-3)LFuc(α 1-3)GicNAc(β 1- P. alcalifaciens O29 [169] 6)GicNAc(α 1-3)LFuc(α 1-3)GicNAc(α 1- Glc(β 1-4)J Gic(β 1-4)J P. alcalifaciens O30 [170] 2)Qui4NFo(β 1-2)Rib(β 1-4)GicA(β 1-3)GalNAc(β 1- I171] Man4R(β 1-4)J P. alcalifaciens O32 [172] 6)GicNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GicNAc(α 1- Gic(β 1-4)J Gic(β 1-4)J P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β 1-6)GicNAc(α 1-4)GiaA(α 1-3)GicNAc(α 1- P. alcalifaciens O35 ^c 4)Gic(α (1-4)Gic(α (1-4)GicA(β 1-3)GalNAc(β 1- P. alcalifaciens O35 ^c 4)GicA(β 1-3)LFuc(α 1-3)GicNAc(α 1- P. alcalifaciens O35 ^c 1)Gic(α (1-4)Gic(α (1-4)GicA(β 1-3)G	[160, 161]	
P. alcalifaciens O21 [163] 3)GalA(a1-4)GalNAc(a1-4)GalNAc(a1-3)GalNAc(β1- V. alcalifaciens O22 [164] 4)GalNAc3(P2DGroAN) (β1-4)Gal(β1-3)FucNAc4N(β1- P. alcalifaciens O23 [165] 4)GlcA6(2RalaLys)(β1-6)Gal(β1-6)Glc(β1-3)GalNAc(β1- P. alcalifaciens O25 [166] 6)GalNAc(β1-4)GlcA(β1-3)GlcNAc(β1- V. alcalifaciens O25 [166] 6)GalNAc(β1-4)GlcA(β1-3)GlcNAc(β1- P. alcalifaciens O27 [167] 2)Qui4NFo(α1-4)GlcA(α1-4)GlcA(β1-3)GalNAc6Ac(β1- P. alcalifaciens O28 [168] 3)GlcNAc(β1-3)LFuc(α1-3)GlcNAc(β1- J. Alcalifaciens O29 [169] 6)GlcNAc(α1-3)GlcNAc(β1- Glc(β1-4)J Glc(β1-4)J P. alcalifaciens O30 [170] 2)Qui4NFo(β1-2)Rib(β1-4)GlcA(β1-4)GlcA(β1-3)FucNAc4N(α1- Glc(β1-4)J Glc(β1-4)J P. alcalifaciens O30 [170] 2)Qui4NFo(β1-2)Rib(β1-4)GlcA(β1-3)GlcNAc(α1- Glc(β1-4)J Man4R(β1-4) P. alcalifaciens O32 [172] 6)GlcNAc3(Slac)(α1-3)LFucNAc(α1-3)GlcNAc(α1- Glc(β1-4)J Man4R(β1-4) P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β1-6)GlcNAc(α1-3)GlcNAc(α1- Glc(β1-4)J GlcA(A1-4)GlcA(β1-3)GalNAc(β1- P. alcalifaciens O35 ^c 4)GlcA(β1-4)UFuc(α1-2)Man(α1-2)LFuc(α1-2)Glc(β1-3)GlcNAc(β1- GlaNAc(α1-3)J Y P. alcalifa	P. stuarth O20 [162]	8)8eLeg5Ac7Ac(α2-4)GlcA(β1-4)GlcA(β1-3)GlcNAc(α1-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P. alcalifaciens O21 [163]	3)GalA(α 1-4)GalNAc(α 1-4)GalNAc(α 1-3)GalNAc(β 1-
P. alcalifaciens O22 [164]4)GalNAc3(P2DGroAN) (β 1-4)Gal(β 1-3)FucNAc4N(β 1-P. alcalifaciens O23 [165]4)GlcA6(2RalaLys)(β 1-6)Gal(β 1-6)Glc(β 1-3)GalNAc(β 1-P. alcalifaciens O25 [166]6)GalNAc(β 1-4)GlcA(β 1-3)GlcNAc(β 1-U(4-1 α)GalA(2RalaLys)9)P. alcalifaciens O27 [167]2)Qui4NFo(α 1-4)GlcA(α 1-4)GlcA(β 1-3)GalNAc6 $Ac(\beta$ 1-P. alcalifaciens O28 [168]3)GlcNAc(β 1-3)LFuc(α 1-3)GlcNAc(β 1-U(4-1 α)LFuc(α 1-3)GlcNAc(β 1-(β 1-3)GalNAc6 $Ac(\beta$ 1-P. alcalifaciens O29 [169]6)GlcNAc(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1-Glc(β 1-4)J9)2)Qui4NFo(β 1-2)Rib(β 1-4)GlcA(β 1-4)GlcA(β 1-3)FucNAc4N(α 1-P. alcalifaciens O30 [170]2)Qui4NFo(β 1-2)Rib(β 1-4)GlcA(β 1-3)GlcNAc(β 1-Man4R(β 1-4)J9)3)Gal(α 1-4)GalNAc(β 1-3)GlcNAc(β 1-P. alcalifaciens O31 ⁶ 3)Gal(α 1-4)GalNAc(β 1-3)GlcNAc(β 1-If 171]Man4R(β 1-4)JP. alcalifaciens O32 [172]6)GlcNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1-Glc(β 1-4)J9)P. stuartii O33 [173]3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1-P. alcalifaciens O35 ⁶ 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1[164]4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1-P. alcalifaciens O38, O454)GlcNAc3(Rlac-DAla)(α 1-4)GlcNAc(β 1-P. alcalifaciens O38, O454)GlcNAc3(Rlac-DAla)(α 1-4)GlcA(β 1-3)GalNAc(β 1-P. alcalifaciens O38, O454)GlcNAc(β 1-3)Gal(α 1-3)GlcNAc(β 1-P. alcalifaciens O38, O454)GlcNAc(β 1-3)Gal(α 1-3)GlcNAc(β 1-P. alcalifaciens O38	D. 1. 110	$-(4-1\alpha)$ Fuc3NFo
P. alcalifaciens 025 [165] 4)GrcAo(2/cataLys)(β1-6)Gal(β1-6)Grc(β1-5)Gal(NAc(β1- L(4+1α)GalA(2RalaLys) P. alcalifaciens 025 [166] 6)GalNAc(β1-4)GlcA(β1-3)GlcNAc(β1- L(4+1α)GalA(2RalaLys) P. alcalifaciens 027 [167] 2)Qui4NFo(α1-4)GlcA(α1-4)Glc(β1-3)GalNAc6Ac(β1- L(4+1α)LFuc(3-1α)GlcA P. alcalifaciens 028 [168] 3)GlcNAc(β1-3)LFuc(α1-3)GlcNAc(β1- L(4+1α)LFuc(3-1α)GlcA P. alcalifaciens 029 [169] 6)GlcNAc(α1-3)LFuc(α1-3)GlcNAc(β1- Glc(β1-4)J P. alcalifaciens 030 [170] 2)Qui4NFo(β1-2)Rib(β1-4)GlcA(β1-4)GlcA(β1-3)FucNAc4N(α1- Glc(β1-4)J P. alcalifaciens 031 ⁶ 3)Gal(α1-4)GalNAc(β1-3)GalNAc(β1- Glc(β1-4)J P. alcalifaciens 032 [172] 6)GlcNAc3(Slac)(α1-3)LFucNAc(α1-3)GlcNAc(α1- Glc(β1-4)J P. alcalifaciens 032 [172] 6)GlcNAc3(Slac)(α1-3)LFucNAc(α1-3)GlcNAc(α1- Glc(β1-4)J P. stuartii 033 [173] 3)Qui4N(4DAspAc)(β1-6)GlcNAc(α1-4)GalA(α1-3)GlcNAc(α1- GalNAc(α1-3)J P. alcalifaciens 035 ⁶ 4)GlcA(β1-4)LFuc(α1-2)Man(α1-2)LFuc(α1-2)Glc(β1-3)GlcNAc(β1- GalNAc(α1-3)J P. alcalifaciens 035 ⁶ 4)GalNAc(α1-6)Glc(α1-4)GlcA(β1-3)GalNAc(β1- L(6-1β)Qui4NR P. alcalifaciens 038, 045 4)GlcNAc3(Rlac-DAla)(α1-4)GlcNAc(β1- [164] P. alcalifaciens 038, 045 4)GlcNAc3(Rlac-DAla)(α1-3)GlcNAc(β1- [164] P. alcalifaciens 038, 045 4)GlcNAc3(Rlac-DAla)(α1-3)GlcA(β1-3)GalNAc(β1- P. alcalifaciens 038, 045 <	P. alcalifaciens O22 [164]	4)GalNAc3($P2D$ GroAN) (β 1-4)Gal(β 1-3)FucNAc4N(β 1-
P. alcalifaciens 025 [166] 6)GalNAc(p1-4)GlcA(p1-5)GlcNAc(p1- L(4-1a)GalA(2RalaLys) P. alcalifaciens 027 [167] 2)Qui4NFo(α 1-4)GlcA(α 1-4)GlcA(α 1-4)Glc(β 1-3)GalNAc6Ac(β 1- P. alcalifaciens 028 [168] 3)GlcNAc(β 1-3)LFuc(α 1-3)GlcNAc(β 1- L(4-1 α)LFuc(3-1 α)GlcA P. alcalifaciens 029 [169] 6)GlcNAc(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- Glc(β 1-4) Glc(β 1-4) P. alcalifaciens 030 [170] 2)Qui4NFo(β 1-2)Rib(β 1-4)GlcA(β 1-4)GlcA(β 1-3)FucNAc4N(α 1- P. alcalifaciens 031 ⁶ 3)Gal(α 1-4)GalNAc(β 1-4)GlcA(β 1-3)FucNAc4N(α 1- P. alcalifaciens 031 ⁶ 3)Gal(α 1-4)GalNAc(β 1-3)GalNAc(β 1- [171] Man4R(β 1-4) Glc(β 1-4) P. alcalifaciens 032 [172] 6)GlcNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- Glc(β 1-4) Glc(β 1-4) Glc(β 1-4) P. stuartii 033 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- P. rustigiami 034 [174] 4)GlcA(β 1-4)LFuc(α 1-2)Man(α 1-2)LFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- GalNAc(α 1-3) 4)GlcA(β 1-3)GlcA(α 1-4)GlcA(β 1-3)GalNAc(β 1 L(6-1 β)Qui4NR 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1- P. alcalifaciens 036, 045 4)GlcNAc3(Rlac-DAla)(α 1-3)GlcNAc(β 1- P. alcalifaciens 038, 045 <	P. alcalifaciens O23 [165]	4)GiCA6(2/(alaLys)(β1-6)Gal(β1-6)GiC(β1-3)GalNAC(β1-
P. alcalifaciens O27 [167] 2)Qui4NFo(α 1-4)GlcA(α 1-4)Glc(β 1-3)GalNAc6Ac(β 1- P. alcalifaciens O28 [168] 3)GlcNAc(β 1-3)LFuc(α 1-3)GlcNAc(β 1- L(4-1 α)LFuc(3 -1 α)GlcA - P. alcalifaciens O29 [169] 6)GlcNAc(α 1-3)LFuc(α 1-3)GlcNAc(α 1- Glc(β 1-4)J - P. alcalifaciens O30 [170] 2)Qui4NFo(β 1-2)Rib(β 1-4)GlcA(β 1-4)GlcA(β 1-3)FucNAc4N(α 1- P. alcalifaciens O31 ⁶ 3)Gal(α 1-4)GalNAc(β 1-3)GalNAc(β 1-3)FucNAc4N(α 1- P. alcalifaciens O31 ⁶ 3)Gal(α 1-4)GalNAc(β 1-3)GlcNAc(α 1- [171] Man4R(β 1-4)J P. alcalifaciens O32 [172] 6)GlcNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- Glc(β 1-4)J - P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- P. rustigianii O34 [174] 4)GlcA(β 1-4)LFuc(α 1-2)Man(α 1-2)LFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- GalNAc(α 1-3)J - P. alcalifaciens O35 ⁶ 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1 I_64] - - P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(β 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)G	P. alcalifaciens 025 [166]	6)GaINAc(p1-4)GICA(p1-3)GICNAc(p1-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P. alcalifacians ()27 [167]	$-(+1\alpha)GaiA(2RaiaLys)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P alcalifacians 028 [168]	2)Qui 4) V o (Q1-4) O CA (Q1-4) O C (P1-5) O an NACOAC (P1- $2)$ Qui 4) N o (Q1-3) Evo(α 1-2) C (Q1-5) O an NACOAC (P1-
P. alcalifaciens O29 [169] 6)GlcNAc(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- Glc(β 1-4)J P. alcalifaciens O30 [170] 2)Qui4NFo(β 1-2)Rib(β 1-4)GlcA(β 1-4)GlcA(β 1-3)FucNAc4N(α 1- Glc(β 1-4)J P. alcalifaciens O31 ⁶ 3)Gal(α 1-4)GalNAc(β 1-3)GalNAc(β 1- I171] P. alcalifaciens O32 [172] 6)GlcNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- Glc(β 1-4)J P. alcalifaciens O32 [172] 6)GlcNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- Glc(β 1-4)J P. alcalifaciens O32 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- Glc(β 1-4)J P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- GalNAc(α 1-3)J P. stuartii O34 [174] 4)GlcA(β 1-4)LFuc(α 1-2)Man(α 1-2)LFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- GalNAc(α 1-3)J P. alcalifaciens O35 ⁶ 4)GlcA(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1 [164] 1/GlcNAc3(Rlac-DAla)(α 1-4)GlcNAc(α 1- 9/GlcNAc(β 1- 164] P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- 1- 164] P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- 1- 13)GlcNAc(β 1- 1- 13)GlcNAc(β 1- 1- 13)GlcNAc(β 1-	1 . accultuciens 020 [100]	$(4-1\alpha)$ Euc(3-1\alpha)Glo A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P alcalifaciens 029 [169]	$\frac{(++\alpha)(1+\alpha)(-+\alpha)(\alpha)}{6(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(\alpha)(-\alpha)(-$
P. alcalifaciens O30 [170] 2)Qui4NFo(β 1-2)Rib(β 1-4)GlcA(β 1-4)GlcA(β 1-3)FucNAc4N(α 1- P. alcalifaciens O31 ⁶ 3)Gal(α 1-4)GalNAc(β 1-3)GalNAc(β 1- [171] Man4R(β 1-4) P. alcalifaciens O32 [172] 6)GlcNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- P. alcalifaciens O32 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- P. stuartii O34 [174] 4)GlcA(β 1-4)LFuc(α 1-2)Man(α 1-2)LFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- GalNAc(α 1-3) 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1 [164] 4)GalNAc(α 1-3)GlcNAc(α 1- P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1- P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1- P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1- P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1-	1. alcalifaciens 025 [105]	Gle(B1-4)
P. alcalifaciens O31 ⁶ 3)Gal(α 1-4)GalNAc(β 1-3)GalNAc(β 1- [171] 3)Gal(α 1-4)GalNAc(β 1-3)GalNAc(β 1- P. alcalifaciens O32 [172] 6)GlcNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- P. alcalifaciens O32 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- P. rustigianii O34 [174] 4)GlcA(β 1-4)LFuc(α 1-2)Man(α 1-2)LFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- GalNAc(α 1-3)J 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1 L(6-1 β)Qui4NR 4)GalNAc(α 1-3)GlcNAc(α 1- P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1- P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(β 1- P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(β 1- P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(β 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. stuartii O43 [167] 2)Qui4NAc(α 1-4)GlcA(β 1-3)GalA6LSer(β 1-3)GlcNAc(β 1-	P. alcalifaciens O30 [170]	$2)Oui4NFo(B1-2)Bib(B1-4)GlcA(B1-4)GlcA(B1-3)FucNAc4N(\alpha1-$
	P. alcalifaciens O31 ^b	3)Gal(a1-4)GalNAc(B1-3)GalNAc(B1-
P. alcalifaciens O32 [172] 6)GlcNAc3(Slac)(α 1-3)LFucNAc(α 1-3)GlcNAc(α 1- Glc(β 1-4) P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GlA(α 1-3)GlcNAc(α 1- Glc(β 1-4) P. rustigianii O34 [174] 4)GlcA(β 1-4)LFuc(α 1-2)Man(α 1-2)LFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- GalNAc(α 1-3) P. alcalifaciens O35 ^e 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1 [164] L(6-1 β)Qui4NR P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1- P. alcalifaciens O38, O45 4)GlcNAc3(Rlac-DAla)(α 1-4)GlcNAc(β 1- [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1-	[171]	Man4R(B1-4)
$ \begin{array}{c} F_{1} = 0 \\ F_{2} = 0 \\ F_{3} = 0 $	P. alcalifaciens O32 [172]	$6)G[cNAc3(S[ac)(\alpha 1-3))]FucNAc(\alpha 1-3)G[cNAc(\alpha 1-3)]G[cNAc(\alpha 1-3)]G[cNA$
P. stuartii O33 [173] 3)Qui4N(4DAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- P. rustigianii O34 [174] 4)GlcA(β 1-4)LFuc(α 1-2)LFuc(α 1-2)CFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- GalNAc(α 1-3) 4)GlcA(β 1-4)LFuc(α 1-2)LFuc(α 1-2)CFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- P. alcalifaciens O35 ^e 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1 [164] \bot (6-1 β)Qui4NR P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1- P. alcalifaciens O38, O45 4)GlcNAc3(Rlac-DAla)(α 1-4)GlcNAc(β 1- [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. stuartii O43 [167] 2)Qui4NAc(α 1-4)GlcA(β 1-3)GalA6LSer(β 1-3)GlcNAc(β 1-		Gle(B1-4)
P. rustigianii O34 [174]4)GlcA(β 1-4)LFuc(α 1-2)Man(α 1-2)LFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1- GalNAc(α 1-3)JP. alcalifaciens O35 ⁶ 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1 \lfloor (6-1 β)Qui4NRP. alcalifaciens O36 [175]7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1-P. alcalifaciens O38, O454)GlcNAc3(Rlac-DAla)(α 1-4)GlcNAc(β 1-[164]4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1-P. alcalifaciens O40 [164]4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1-P. stuartii O43 [167]2)Qui4NAc(α 1-4)GlcA(β 1-3)GalA6LSer(β 1-3)GlcNAc(β 1-	P. stuartii O33 [173]	3)Oui4N(4pAspAc)(β 1-6)GlcNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1-
$ \begin{array}{c} GalNAc(\alpha 1-3) J \\ \hline GalNAc(\alpha 1-3) J \\ \hline \\ 4) GalNAc(\alpha 1-6) Glc(\alpha 1-4) GlcA(\beta 1-3) GalNAc(\beta 1 \\ l(6-1\beta) Qui 4NR \\ \hline \\ P. alcalifaciens O36 [175] \\ \hline \\ P. alcalifaciens O36 [175] \\ \hline \\ P. alcalifaciens O38, O45 \\ l(61-3) GlcNAc(\alpha 1-3) GlcNAc(\alpha 1-3) GlcNAc(\beta 1-3)$	P. rustigianii O34 [174]	4)GlcA(β 1-4)LFuc(α 1-2)Man(α 1-2)LFuc(α 1-2)Glc(β 1-3)GlcNAc(β 1-
P. alcalifaciens O35 ^c 4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1 [164] L(6-1 β)Qui4NR P. alcalifaciens O36 [175] 7)Kdo(β 2-3)L6dTal2Ac(α 1-3)GlcNAc(α 1- P. alcalifaciens O38, O45 4)GlcNAc3(Rlac-DAla)(α 1-4)GlcNAc(β 1- [164] 4)GlcNAc3(Rlac-DAla)(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. alcalifaciens O40 [164] 4)Qui3NFo(β 1-3)Gal(α 1-3)GlcA(β 1-3)GalNAc(β 1- P. stuartii O43 [167] 2)Qui4NAc(α 1-4)GlcA(β 1-3)GalA6LSer(β 1-3)GlcNAc(β 1-		$GalNAc(\alpha 1-3)$
	P. alcalifaciens O35 ^c	4)GalNAc(α 1-6)Glc(α 1-4)GlcA(β 1-3)GalNAc(β 1
P. alcalifaciens O36 [175] 7)Kdo(β2-3)L6dTal2Ac(α1-3)GlcNAc(α1- P. alcalifaciens O38, O45 4)GlcNAc3(Rlac-DAla)(α1-4)GlcNAc(β1- [164] 4)GlcNAc3(Rlac-DAla)(α1-3)GlcA(β1-3)GalNAc(β1- P. alcalifaciens O40 [164] 4)Qui3NFo(β1-3)Gal(α1-3)GlcA(β1-3)GalNAc(β1- P. stuartii O43 [167] 2)Qui4NAc(α1-4)GlcA(β1-3)GalA6LSer(β1-3)GlcNAc(β1-	[164]	L(6-1B)Qui4NR
P. alcalifaciens O38, O45 4)GlcNAc3(Rlac-DAla)(α1-4)GlcNAc(β1- [164] 4)Qui3NFo(β1-3)Gal(α1-3)GlcA(β1-3)GalNAc(β1- P. alcalifaciens O40 4)Qui3NFo(β1-3)Gal(α1-3)GlcA(β1-3)GalNAc(β1- P. stuartii O43 [167] 2)Qui4NAc(α1-4)GlcA(β1-3)GalA6LSer(β1-3)GlcNAc(β1-	P. alcalifaciens O36 [175]	7)Kdo(β2-3)L6dTal2Ac(α1-3)GlcNAc(α1-
[164] 4)Qui3NFo(β1-3)Gal(α1-3)GlcA(β1-3)GalNAc(β1- P. alcalifaciens O40 [164] 4)Qui3NFo(β1-3)Gal(α1-3)GlcA(β1-3)GalNAc(β1- P. stuartii O43 [167] 2)Qui4NAc(α1-4)GlcA(β1-3)GalA6LSer(β1-3)GlcNAc(β1-	P. alcalifaciens O38, O45	4)GlcNAc3(Rlac-DAla)(α1-4)GlcNAc(β1-
P. alcalifaciens O40 [164] 4)Qui3NFo(β1-3)Gal(α1-3)GlcA(β1-3)GalNAc(β1- P. stuartii O43 [167] 2)Qui4NAc(α1-4)GlcA(β1-3)GalA6LSer(β1-3)GlcNAc(β1-	[164]	
P. stuartii O43 [167] 2)Qui4NAc(α1-4)GlcA(β1-3)GalA6LSer(β1-3)GlcNAc(β1-	P. alcalifaciens O40 [164]	4)Qui3NFo(β1-3)Gal(α1-3)GlcA(β1-3)GalNAc(β1-
	P. stuartii O43 [167]	2)Qui4NAc(α1-4)GlcA(β1-3)GalA6LSer(β1-3)GlcNAc(β1-

 Table 3.12
 Structures of Providencia OPSs

(continued)

P. stuartii 044 [176]	4)GalNAc(α 1-3)LFuc(α 1-3)Glc(α 1-4)LQui(α 1-3)GlcNAc(α 1- GlcA(β 1-4) \rfloor
P. alcalifaciens O46 [177]	3)GlcA(β 1-4)LFuc(α 1-4)LFuc(α 1-2)Glc(β 1-3)GlcNAc6Ac(α 1-Glc(α 1-3) \int
P. stuartii O47 [178]	2)Gal(β 1-4)Man6 <i>Ac</i> (β 1-3)Man(β 1-4)GlcA(β 1-3)GlcNAc(α 1- LRha(α 1-3)
P. alcalifaciens O48 [179]	3)Man(α1-2)LFuc(α1-2)GlcA4Ac(β1-3)GalNAc(α1-
P. stuartii O49 [180]	4)Gal(α1-6)Gal(β1-3)GalNAc(β1-
P. stuartii O57 [181]	$2)Gal(\alpha 1-3) LRha 2Ac(\alpha 1-4)Glc(\alpha 1-4)GalA6LAla(\alpha 1-3)GlcNAc(\beta 1-4)GalA6LAla(\alpha 1-4)GalA6LAAAGAAGAAAAGAAAGAAAAAGAAAAAAAAAAAAAA$
P. alcalifaciens O60 [182]	4)GlcA6LSer(β1-3)GalNAc(β1-4)Glc(β1-3)Gal(α1-4)GalNAc(β1-

Tab	le 3.12	(continued)
-----	---------	-------------

^aR indicates (1S,3R)-3-hydroxy-1-carboxybutyl. In the original publication [153], Gro(3-*P* has been shown in the structure erroneously.

^bR indicates (*1R*,*3R*)-3-hydroxy-1-carboxybutyl.

^cR indicates *N*-(1-carboxyethyl)alanine of unknown configuration.

Morganella morganii is commonly found in the environment and in the intestinal tract of humans, mammals and reptiles as normal flora. A remarkable feature of the OPS of *M. morganii* is the presence of two rare sugars: a 5-*N*-acetimidoyl-7-*N*-acetyl derivative of 8-epilegionaminic acid and a higher branched ketouronamide called shewanellose, which occurs in the pyranose form in some O-units or in the furanose form in the others [183] (Fig. 3.1).

Fig. 3.1 Structures of the O-units of Morganella morganii [183]

A similar structure but with shewanellose exclusively in the pyranose form has been reported for a polysaccharide of *Shewanella putrefaciens* A6 [184].

Yersinia

Most important *Yersinia* species are *Yersinia pestis*, the cause of bubonic and pneumonic plague, *Yersinia pseudotuberculosis* and *Yersinia enterocolitica*, which cause less severe diseases usually restricted to gastrointestinal tract. *Y. pestis* has a cryptic O-antigen gene cluster and does not express any O-antigen [186]. Minireviews on the OPS structures of other *Yersinia* have been published [185–188].

Yersinia pseudotuberculosis is the only bacterium that produces all known natural 3,6-dideoxyhexose, and most of its OPSs have a side chain of one of the isomers. Paratose occurs as either pyranose (serogroup O3) or furanose (serogroup

O1); other 3,6-dideoxyhexoses are always pyranosidic. Two OPSs have an L6dAltf side chain (Table 3.13). The 6-deoxy- and 3,6-dideoxy-hexoses are linked either directly to the main chain or through another uncommon monosaccharide: 6-deoxy-*D-manno*-heptose (6dmanHep) or, in serogroup O6, a branched sugar 3,6-dideoxy-4-C-[(S)-1-hydroxyethyl]-D-xylo-hexose (yersiniose A). When synthesis of 6dmanHep is impaired, its biosynthetic precursor, *D-glycero-D-manno*-heptose, is incorporated into the O-unit in place of 6dmanHep [189]. Between O-serogroups, the OPSs differ in the side chain or the main chain or both. Within complex O-serogroups, division to subgroups is based either on different side chains linked to the same main chain as in serogroups. The OPS of *Y. pseudotuberculosis* O10 is remarkably similar to that of *E. coli* O111 and *S. enterica* O35.

Many linear OPSs and main chains of branched OPSs of *Y. enterocolitica* and several other *Yersinia* species are homopolymers of Rha, LRha or L6dAlt (Table 3.14). The lateral monosaccharides are enantiomers of xylose and xylulose (Xlu), yersiniose A and its (*R*)-stereoisomer yersiniose B. The O-antigens of *Y. enterocolitica* O6,31 and O8 are the only known polysaccharides that contain 6dGul. The O5,27 and O10 antigens have comb-like structures with each rhamnose residue of the main chain substituted with a xylulose residue. The OPSs of two *Y. kristensenii* strains resemble glycerol teichoic acids. The *Y. ruckerii* OPSs are acidic due to the presence of *N*-acetylmuramic acid or a derivative of 8eLeg with a 4-hydroxybutanoyl group at N-5. An α 1-2-linked homopolymer of Rha4NFo is shared by *Y. enterocolitica* O9 and *Brucella abortus* [203]. The OPS of *Y. ruckerii* O1 is remarkably similar to that of *Salmonella arizonae* O61, and those of *Y. enterocolitica* O5,27 and *Y. kristensenii* O11,23 are identical with the OPSs of *E. coli* O97 and O98, respectively.

Other Genera

Plesiomonas shigelloides, the only species in the genus, is a ubiquitous microorganism, which may cause water- and food-born gastrointestinal infections and illnesses in immunocompromised hosts and neonates. Its OPSs contains various unusual components, including D-glycero-D-manno-heptose (DDmanHep), 6dmanHep, L6dTalN, QuiN4N and GlcN3NA as well as *N*-acyl groups: acetimidoyl, (*S*)-3-hydroxybutanoyl or 3-hydroxy-2,3-dimethyl-5-oxoprolyl (Table 3.15). The O17 antigen possesses a disaccharide O-unit composed of two uncommon sugars: one acidic, LAltNAcA, and one basic, FucNAc4N. It has the same structure as the plasmid-encoded OPS of *Shigella sonnei* [91].

Yokenella regensburgei is recovered from wounds and knee fluid, respiratory tract, urine, sputum and stool. It is an opportunistic pathogen, especially under immunocompromised conditions. The OPSs of four strains studied have the same trisaccharide O-unit containing LDmanHep and 2-O-acetylated or, in one strain, 2,4-di-O-acetylated L6dTal [227]:

2)LDmanHep(α 1-3)L6dTal2(4)Ac(α 1-3)FucNAc(α 1-

O1a [190]	3)Gal(α1-3)GlcNAc(β1-
	$Parf(\alpha 1-3)6dmanHep(\beta 1-4)^{\perp}$
O1b [191]	2)Man(β1-4)Man(α1-3)LFuc(α1-3)GlcNAc(α1-
	$Parf(\beta 1-3)$
O1c [192]	2)Man(α1-3)LFuc(α1-3)GalNAc(β1-
	$Parf(\beta 1-3)$
O2a [189,193]	3)Gal(α1-3)GlcNAc(β1-
	Abe(α1-3)6dmanHep(β1-4)
O2b [194]	2)Man(α1-3)LFuc(α1-3)GalNAc(β1-
	Abe(α 1-3)
O2c [195]	6)Man(α1-2)Man(α1-2)Man(β1-3)GalNAc(α1-
	Abe(\alpha1-3)
O3 [186, 195]	2)Man(α1-3)LFuc(α1-3)GalNAc(α1-
	$\operatorname{Par}(\beta 1-4)^{\perp}$
O4a [196]	6)Man(α1-2)Man(α1-2)Man(β1-3)GalNAc(α1-
	$Tyv(\alpha 1-3)$
O4b [197]	3)Gal(α1-3)GlcNAc(β1-
	Tyv(α 1-3)6dmanHep(β 1-4)
O5a [185,186]	2)LFuc(α 1-3)Man(α 1-4)LFuc(α 1-3)GalNAc(α 1-
	$\operatorname{Asc}(\alpha 1-3)^{\rfloor}$
O5b [185,186]	2) $LFuc(\alpha 1-3)Man(\alpha 1-4)LFuc(\alpha 1-3)GalNAc(\alpha 1-$
	L6dAltf(a1-3)
O6 ^a [185,186,198]	3)GlcNAc(β 1-6)GalNAc(α 1-3)GalNAc(β 1-
	$\operatorname{Col}(\alpha 1-2)\operatorname{Sug}(\beta 1-3)^{\perp}$
07 [187]	6)Glc(β1-3)GalNAc(α1-3)GalNAc(β1-
	$\operatorname{Col}(\alpha 1-2)^{j}$ $\operatorname{Glc}(\alpha 1-6)^{j}$
O9 [199]	4)GlcNAc3Ac(β 1-4)LFucNAm(α 1-3)GlcNAc(α 1-
	Gal(α1-3)
O10 [200]	4)Glc(α 1-4)Gal(α 1-3)GalNAc(β 1-
	$\operatorname{Col}(\alpha 1-3)^{j}$ (6-1 α)Col
011 [201]	2)Man(β 1-4)Man(α 1-3)LFuc(α 1-3)GlcNAc(α 1-
015 (202)	L6dAltf(α1-3)
015 [202]	2)LFuc(α 1-3)Man(α 1-4)LFuc(α 1-3)GalNAc(α 1-
	$Parf(\beta 1-3)^{\perp}$

 Table 3.13
 Structures of Y. pseudotuberculosis OPSs

^aSug indicates yersiniose A.

Budvicia aquatica, Pragia fontium, Rahnella aquatilis are the only species in each of the three new genera of Enterobacteriaceae. They are isolated mainly from fresh water, water pipes and sometimes from clinical specimens but the

<i>Y. enterocolitica</i> O1,2a,3 ^a , O2a,2b,3 [185,204]	2)L6dAltf3 $Ac(\beta 1-2)$ L6dAltf3 $Ac(\beta 1-3)$ L6dAltf($\beta 1-3$)L6dAltf($\beta 1-3$)L6dAl
Y. enterocolitica O2,3, O3 [185,204]	2)L6dAlt(β1-
Y. enterocolitica O4,32,	3)GalNAc(α1-3)GalNAc(β1-
Y. intermedia O4,33 ^{a,b}	Sug1'Ac(α 1-4)
[185,198]	
Y. enterocolitica O5,27 ^c	3)LRha(α 1-3)LRha(β 1-
[185]	$Xluf(\beta 2-2)$ $(2-2\beta)Xluf$
Y. enterocolitica O6,31	2)Gal(β1-3)6dGul(α1-
[185]	
Y. enterocolitica O8 ^a [185]	4)Man(1-3)Gal(1-3)GalNAc(α 1-
	$6 dGul(1-3)^{\perp}$ $(2-1)_{L}Fuc$
Y. enterocolitica O9 [185]	2)Rha4NFo(a1-
Y. enterocolitica O10 [205]	3)Rha(α1-
	$LXluf(\beta 2-2)$
Y. kristensenii O11,23,	3)LQuiNAc(α 1-4)GalNAcA3Ac(α 1-3)LQuiNAc(α 1-3)GlcNAc(β 1-
O11,24 ^a [206]	
Y. kristensenii O12,25 [207]	2)Gro(1-P-6)Glc(β1-4)LFucNAc(α1-3)GlcNAc(β1-
	Glc(α 1-6)GalNAc(α 1-3) GlcNAc(β 1-4)
Y. kristensenii O12,26	2)Gro(1-P-6)Glc(β1-6)GalNAc(α1-3)LFucNAc(α1-3)GlcNAc(β1-
[208]	$\operatorname{Glc}(\alpha 1-2)^{j}$ $\operatorname{Glc}(\alpha 1-4)^{j}$
Y. frideriksenii O16,29 ^e	2)Rha(α1-3)Rha(β1-3)Rha(α1-
[209]	$Sug(\beta_{1-2})^{\perp}$
Y. kristensenii O25.35	2)Gro(1-P-6)Glc(β 1-4)LFucNAc(α 1-3)GlcNAc(β 1-
[210]	$G[c(\alpha 1-6)Ga](\alpha 1-3) \downarrow G[c(\alpha 1-4) \downarrow$
Y kristensenii O28 [211]	$\frac{3}{2} Ph_{\alpha}(\alpha 1-3) Ph_{\alpha}$
	$-2 \ln(\alpha (\alpha - 3)) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha (\alpha - 3)) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3) = -2 \ln(\alpha - 3)) = -2 \ln(\alpha - 3)$
V. aldowas 6005 [212]	-(2-10)GalNACA($+10$)LKlia
1. aldovae 0005 [212]	2)Gic(p_1 -2)Fuc3N(R_3Hb)(p_1 -6)GicNAc(α_1 -4)GaiNAc(α_1 -5)GicNAc(p_1 -
	Gic(β1-3) ³
Y. bercovieri O10 ^o [213]	3)Rha(α 1-3)Rha(α 1-
	Sug(\alpha1-2)_
Y. mollarettii [214]	2)Gal(β1-3)6dGul(α1-
Y. rohdei WA 339 [215]	3)LRha(α 1-3)LRha(α 1-3)LRha(β 1-
Y. ruckerii O1 [67, 216]	8)8eLegp5(4Hb)7Ac(α2-3)LFucNAm(α1-3)GlcNAc(α1-
	GlcNAc(β1-4)
Y. ruckerii O2 ^f [217]	4)GlcNAc6Ac3(Rlac)(α1-3)LQuiNAc(α1-3)GlcNAc(β1-

 Table 3.14
 Structures of other Yersinia sp. OPSs

^aThe OPS lacks O-acetylation.

^bSug indicates yersiniose B.

^cAn alternative structure with one more LRha residue in the O-unit has been reported for the O5 and O5,27 antigens [218].

^dThe configurations of most glycosidic linkages have not been determined.

^eSug indicates yersiniose A.

^fDetails of the structure elucidation have not been reported.

O1 [219,220]	3)L6dTalNAc4Ac(β 1-4)LFucNAc(α 1-4)LFucNAc(α 1-
	4) LFucNAc(α1-3)QuiNAc4N(S3Hb)(β1-
017 [221]	-4)LAltNAcA(α1-3)FucNAc4N(β1-
O51 [222]	4)GlcNAc3N(S3Hb)A(β1-4)LFucNAm3Ac(α1-3)QuiNAc(α1-
O54 [223,224]	4)DDmanHep(β1-3)6dmanHep2Ac(β1-4)LRha(α1-3)GlcNAc(β1-
	$(3-1\alpha)$ LRha(4-1 β)Galf
O74 ^a [225]	2)Qui3NR(β1-3)LRha2Ac(α1-3)FucNAc(α1-
22074, 12254 [226]	3)LRha(α 1-2)LRha(α 1-2)LRha(α 1-4)GalA(α 1-3)GlcNAc(α 1-

 Table 3.15
 Structures of P. shigelloides OPSs

^aR indicates 3-hydroxy-2,3-dimethyl-5-oxoprolyl of unknown configuration.

Table 3.16 Structures of R. aquatilis OPSs

33071 ^T [231]	3)Man(α 1-2)Man(α 1-3)Gal(β 1- and 4)Rha(α 1-3)Rha(α 1-3)Man(β 1- (2-1 α)GlcA(4-1 α)Gal(3-1 β)Glc
1-95 [233]	3)Gal/(β 1-3)Fuc(α 1- Gal(α 1-2) \rfloor
3-95 [234]	2)Man(α 1-3)Man(α 1-6)Man(α 1- and 6)Glc(α 1-

medical significance of the three genera remains uncertain. The OPS of *B. aquatica* has a 1,3-poly(glycerol phosphate) main chain decorated with β 1-2-linked Glc residues [228].

The OPS of *P. fontium* 27480 is acidic due to the presence of ManNAc3NAcA [229]:

 $4) Man NAc 3 NAc A(\beta 1-2) LRha(\alpha 1-3) LRha(\beta 1-4) Glc NAc(\alpha 1-3) LRha(\beta 1-4) Glc NAc(\alpha 1-3) LRha(\beta 1-4) LRha(\beta 1$

and that of *P. fontium* 97 U116 is neutral [230]:

 $2)Gal\textit{f}(\alpha1\text{-}3) LRha2Ac(\alpha1\text{-}4)GlcNAc(\alpha1\text{-}2) LRha(\alpha1\text{-}3)GlcNAc(\beta1\text{-}$

Both acidic and neutral OPSs have been found in *R. aquatilis* 33071^{T} [231], the former being shared by strain 95 U003 [232]. In *R. aquatilis* 3–95, two neutral homoglycans, a mannan and a glycan, are present (Table 3.16).

Erwinia and *Pectobacterium* are pathogens of plants. The former causes wilts or blight diseases and the latter soft rot. The OPS of *E. amylovora* T is structurally similar to that of *R. aquatilis* 1–95 [233] but galactofuranose is replaced by glucofuranose [235]. The latter sugar has not been reported elsewhere in natural

carbohydrates, and the structure may need revision [1]. The OPS of *P. atrosepticum* ssp. *carotovora* (formerly *E. carotovora*) is enriched in deoxy sugars [236]:

3)LRha(β 1-4)LRha(α 1-3)Fuc(α 1-Glc(α 1-3) \int

and a higher branched monosaccharide erwiniose has been identified in the OPS of *P. atrosepticum* ssp. *atroseptica* [237] (Fig. 3.2).

Fig. 3.2 Structure of the OPS of Pectobacterium atrosepticum ssp. atroseptica [237]

3.3.2.2 Aeromonadaceae

Aeromonas species are ubiquitous water-borne bacteria responsible for a wide spectrum of diseases in aquatic and terrestrial animals as well as in humans. A. hydrophila and A. caviae are often associated with gastrointestinal diseases in adults and acute gastroenteritis in children. Most OPSs of the genus studied so far are neutral. The O-unit of A. hydrophila O34 contains two L6dTal residues, one of which is randomly O-acetylated. The OPSs of various A. salmonicida types possess a main chain of 4)LRha(α 1-3)ManNAc(β 1- and differ in the modes of O-acetylation and glucosylation (Table 3.17). Under in vivo growth conditions, A. salmonicida type A strain A449 produces a different OPS with a side chain elongated by four more Glc residues and more sites of O-acetylation [238]. In encapsulated type A strain 80204-1, the OPS includes a partially amidated GalNAcA residue and an Nacetyl-L-alanyl derivative of Qui3N [239]. The OPSs of A. caviae are acidic due to the presence of GlcA or glycerol 1-phosphate. The O-antigen of A. bestiarum with an L-rhamnan backbone is shared by *Pseudomonas syringe* pv. *atrofaciens* [240, 241]. A. trota, Vibrio cholerae O22 and O139 and Pseudoalteromonas tetraodonis have a branched tetrasaccharide fragment in common, which represents a colitose (3-deoxy-L-fucose) analogue of the Le^b antigenic determinant.

3.3.2.3 Pseudoalteromonadaceae, Shewanellaceae, Idiomarinaceae

These families combine microorganisms of the marine origin, whose O-antigen structures have been summarized recently [251, 252]. The OPSs of obligatory marine bacteria *Pseudoalteromonas* (formerly *Alteromonas*) are neutral or acidic and contain various unusual components, such as LIdoA, amino and diamino hexuronic acids, their primary amides and amides with amino acids, keto sugars, including Kdo and Pse, an ether of Glc with (*R*)-lactic acid (glucolactilic acid) and glycerol phosphate; constituent amino sugars bear various N-linked hydroxy and amino acids (Table 3.18). An agarolytic strain *P. agarivorans* KMM 232 (former

A. bestiarum [242]	3)LRhap(α 1-3)LRhap(α 1-2)LRhap(α 1-2)LRhap(α 1-
	L(2-1β)GlcNAc
A. caviae 11212 [243]	6)ManNAc(β1-4)GlcA(β1-3)GalNAc(β1-
	$LRha(\alpha 1-3) \int (4-1\beta)Gal$
A. caviae ATCC 15468 [244]	4)GalNAc3(P1Gro)(β1-4)GlcNAc(β1-4)LRhap(α1-3)GalNAc(β1-
A. hydrophila SJ-44 ^a [245]	4)LRha2Ac(α1-3)GlcNAc(β1-
A. hydrophila O34 ^b [246]	4)Man(α1-3)L6dTal2Ac(α1-3)GalNAc(β1-
	(3-1α)L6dTal2,3,4Ac
A. salmonicida type A	4)LRha2Ac(α1-3)ManNAc(β1-
[247,248]	$\operatorname{Glc}(\alpha 1-3)$
A. salmonicida type B [248]	4)LRha(α1-3)ManNAc(β1-
A. salmonicida type C [248]	4)LRhaAc(α1-3)ManNAc(β1-
A. salmonicida SJ-15 ^c [249]	4)LRha(α1-3)ManNAc4Ac(β1-
	$\operatorname{Glc}(\alpha 1-4)\operatorname{Glc}(\alpha 1-3)$
A. salmonicida 80204-1 [239]	4)Qui3N(LAlaAc)(β1-3)GalNAcAN(1-3)QuiNAc(β1-
A. trota [250]	3)Gal(β1-3)GlcNAc(β1-4)LRha(α1-3)GalNAc(α1-
	$Col(\alpha 1-2)$ (4-1 α)Col

Table 3.17 Structures of Aeromonas OPSs

^aA. hydrophila O11 antigen has the same structure but, in addition to LRha2Ac, includes minor LRha3Ac [74].

^bLateral L6dTal carries no, one or two *O*-acetyl groups at any positions.

^cThe structure seems to need reinvestigation [248].

P. marinoglutinosa) synthesizes different polysaccharides in the S- and R-form colonies: a linear sulfated glycan, which is highly uncommon for O-antigens, or a branched OPS enriched in amino sugars, including an *N*-acetyl-L-threonyl derivative of FucN, respectively. The OPS of *P. rubra* has a similar structure to that of *Vibrio vulnificus* CECT 5198 [253] but the latter incorporates QuiNAc into the O-unit in place of its biosynthetic precursor 2-acetamido-2,6-dideoxy-D-xylo-hexos-4-ulose in *P. rubra*.

Bacteria of the genus *Shewanella* are responsible for spoilage of protein-rich foods and are opportunistic pathogens of marine animals and humans. All OPSs of *Shewanella* studied are acidic and many contain GlcA, GalA or amides of GalA with 2-amino-1,3-propanediol (GroN) or N^{e} -[(*S*)-1-carboxyethyl]-L-lysine (*S*alaLys) (Table 3.19). The OPS of *S. japonica* KMM 3601 is one of a few O-antigens that contain a derivative of 4-epilegionaminic acid (4eLeg). In *S. algae* BrY, an LRha residue is linked to a neighbouring LFucN through O2 of an L-malyl group, which is the *N*-acyl substituent of the latter.

The OPS of *Idiomarina zobellii* is unique in the presence of two amino sugars, Qui4N and LGuINA, with free amino groups [258]:

3)Qui4N(α 1-4)GlcA(α 1-6)GlcNAc(α 1-4)LGulNA(α 1-3)FucNAc(β 1-

Pseudoalteromonas sp.	4)ManNAc3NAcA6LAla(β1-4)GlcNAc3NAcA(β1-
KMM 634 [251]	4)GlcA(β1-3)QuiNAc4N(S3Hb)(α1-
Pseudoalteromonas sp. KMM 637 [251]	4)Glc(β1-4)GalA(β1-4)Man(β1-
Pseudoalteromonas sp. KMM 639 [251]	3)LRha(α1-3)Gal6(P2Gro)(α1-
P. agarivorans (R-from) [254]	3)LRha(α1-3)FucN(LThrAc)(α1-3)GalNAc(α1-
	ManNAcA(β1-4)
P. agarivorans (S-from) ^a [251]	4)LRha2R(α1-3)Man(β1-
P. aliena [252]	3)GlcA6LSer(β1-4)GlcNAc(α1-4)ManNAcA6LSer(β1-4)GlcNAc(β1- (4-1α)Qui4NAc
P. atlantica [255]	3)Gal(α1-6)GlcNAc(α1-4)GalA(α1-3)QuiNAc(β1-
	L(6-2β)Pse5Ac7Ac
P. distincta [251]	4)Pse5Ac7Fo(α2-4)QuiNAc(β1-
	GlcA(α 1-4)GalNAc(β 1-4)GalNAcA <i>3Ac</i> (α 1-3)
P. elyakovii [251]	6)Glc(α1-2)Glc(α1-4)GalNAc(β1-3)Gal(α1-3)GalNAc(β1-
P. flavipulchra [251]	7)Kdo(α2-3)L6dTal4Ac(α1-3)Gal(1β-
P. haloplanktis	2)Qui3N(DAlaAc)(β1-4)GalNAcA(α1-4)Gal2,6Ac(α1-
ATCC 14393 [251]	4)LGalNAcA(α1-3)QuiNAc4NAc(β1-
P. haloplanktis KMM 156 [251]	2)LRha(α 1-3)LRha(β 1-4)GlcNAc(β 1-
	-(3-1α)Glc3Rlac
P. haloplanktis KMM 223 [251]	2)LIdoA(α1-4)GlcA(β1-4)GlcA(β1-3)QuiNAc4N(S3Hb)(β1-
	(4-1α)QuiNAc4N(S3Hb)
P. mariniglutinosa (Alteromonas	3)Gal(α1-3)GlcNAc(β1
marinoglutinosa) [256]	L(4-1β)ManNAc
P. nigrifaciens [251]	3)Gal(α1-4)LGulNAcA(α1-4)GlcNAc3Ac(β1-
	$L_{(4-1\alpha)Fuc3N(4Hb)}$
P. rubra ^b [253]	4)GlcNAc3NRAN(β1-4)LGalNAmA3Ac(α1-3)Sug(α1-
P. tetraodonis [251],	2)Col(α1-4)GlcNAc(β1-4)GlcA(β1-3)GalNAc(1β-
P. carrageenovora [252]	$(3-1\beta)Gal(2-1\alpha)Col$

 Table 3.18
 Structures of Pseudoalteromonas OPSs

^aR indicates sulfate.

^bR indicates 4-L-malyl, and Sug indicates 2-acetamido-2,6-dideoxy-D-*xylo*-hexos-4-ulose.

S. algae 48055 [251]	3)GalA6(GroN)(α1-4)Neu5Ac(α2-3)GalA6(GroN)(β1-3)GlcNAc(β1-
S. algae BrY ^a [251]	3)LRha(α 1-2)LRha(α 1-2)R(4-2)LFucN(α 1-3)QuipNAc4N(R 3Hb)(α 1-
S. fidelis KMM 3582 ^T [252]	2)GalA6(2SalaLys)(α1-3)GalNAc(β1-4)GlcA(β1-3)GalNAc(β1-
<i>S. japonica</i> KMM 3299 ^T [252]	3)Fuc4NAc(α1-4)GalA(α1-3)LFucNAc(α1-3)QuiNAc4NAc(β1-
S. japonica KMM 3601 [257]	4)4eLeg5Ac7Ac(α2-4)GlcA3Ac-(β1-3)GalNAc(β1-

 Table 3.19
 Structures of Shewanella OPSs

^aR indicates 4-L-malyl.

3.3.2.4 Pasteurellaceae

Bacteria *Aggregatibacter* (former *Actinobacillus*) *actinomycetemcomitans* are associated with aggressively progressing periodontitis and also cause serious infections, such as endocarditis. The O-antigens of serotypes a-f are neutral polysaccharides with di- or tri-saccharide O-units enriched in 6-deoxy sugars (Table 3.20). In sero-types a and c, they are distinctly O-acetylated homopolymers of enantiomers of 6-deoxytalose.

Actinobacillus (Haemophilus) pleuropneumoniae is a primary swine pathogen that causes hemorrhagic necrotizing pneumonia. A. pleuropneumoniae O-antigens are neutral polysaccharides, including galactans and glucogalactans present in many serogroups (Table 3.21).

Actinobacillus suis is a pathogen of pigs too. The O1 antigen of *A. suis* is a β 1-6-linked glucan [268]. The O2 antigen that occurs in the majority of isolates in sick animals is a heteropolysaccharide [269]:

3)Gal(β 1-4)Glc(β 1-6)GlcNAc(β 1-Gal(α 1-6) \rfloor

Mannheimia (Pasteurella) haemolytica is associated with several diseases of cattle and sheep. The OPSs of both biotypes A and T are neutral and as simple as the other O-antigens in the family Pasteurellaceae (Table 3.22). The OPS of serotypes T4 and T10 has the same structure as galactan I of *Klebsiella pneumoniae* present also in *S. marcescens* O20 and some other bacteria. Serotype T3 shares the OPS with *S. marcescens* O19.

Although *Haemophilus influenzae* is perceived to lack any O-antigen, it has been found that when grown on a solid medium enriched in sialic acid, a group of *H. influenzae* strains synthesize LPSs, in which a tetrasaccharide is attached *en bloc* to the core OS and may be considered thus as an O-unit in an SR-type LPS [273]. As in *S. enterica* serogroups A-E, the first sugar of the O-unit is Gal. Two glycofroms are coexpressed, which differ only in the terminal non-reducing sugar, which is either Neu5Ac or phosphoethanolamine-bearing GalNAc:

Neu5Ac(α 2-3)Gal(β 1-4)GlcNAc(β 1-3)Gal(β 1- and GalNAc6*P*EtN(α 1-6)Gal(β 1-4)GlcNAc(β 1-3)Gal(β 1-

a [259]	3)6dTal2Ac(α1-2)6dTal(α1-	d [259]	$3) Glc(\beta 1-4) Man(\beta 1-4) Man(\alpha 1-LRha(\alpha 1-3))$
b [260]	3)Fuc(α 1-2)LRha(α 1- GalNAc(β 1-3) \int	e [259]	4)GlcNAc(α1-3)LRha(α1-
c [259]	3)L6dTal4Ac(α1-2)L6dTal(α1-	f [261]	2)LRha(α 1-3)LRha(α 1- GalNAc(β 1-2)

Table 3.20 Structures of A. actinomycetemcomitans OPSs

1, 9, ^a 11 [262,263]	2)LRha(α 1-2)LRha(α 1-6)Glc(α 1-
	GlcNAc(β1-3)
2 [262]	2)LRha(α1-2)Gal(α1-3)Glc(β1-4)Glc6Ac(α1-4)GalNAc(β1-
3, 8, 15 [262,264]	3)Glc(α1-2)Galf(β1-6)Gal(α1-6)Glc(β1-3)Galf(β1-
4 [262]	4)LRha(α1-3)Gal(β1-4)GalNAc(β1-
	Glc(β1-3)
5 [°] [262]	6)Gal(β1-
6 [262]	3)Glc(α1-2)Galf(β1-6)Glc(α1-6)Glc(β1-3)Galf(β1-
7, 13 [262,265]	4)LRha(α1-3)Gal(β1-4)GalNAc(β1-
	Gal(β1-3)
10 [262]	2)Galf(β1-
12 [266]	5)Galf(β1-6)Galf(β1-
	$Gal(\alpha 1-6)$
14 [267]	5)Galƒ(β1-
	$Gal(\alpha 1-2)$

Table 3.21 Structures of A. pleuropneumoniae OPSs

^aIn serotype 9, GlcNAc is present in a non-stoichiometric amount. ^bIn several strains, the polysaccharide is randomly O-acetylated.

Table 3.22 Structures of M. haemolytica OPSs

A1, A6, A9 [270]	4)Gal(β1-3)Gal(β1-3)GalNAc(β1-
T3 [271]	4)LRha(α1-3)GlcNAc(β1-
T4, T10 [272]	3)Gal(α1-3)Galf(β1-

3.3.2.5 Pseudomonadaceae

Pseudomonas aeruginosa is an important opportunistic pathogen causing human infections, primarily in immunocompromized hosts and cystic fibrosis patients. O-antigen structures of this bacterium have been studied in detail and surveyed repeatedly [274–276]. In serogroups O1-O13, the OPSs have linear acidic trior tetra-saccharide O-units typically containing LRha, 6-deoxyamino sugars (QuiN, FucN, LFucN, QuiN4N) and acidic amino sugars, including GalNA, LGalNA, GlcN3NA, ManN3NA, LGulN3NA, Pse and 8eLeg. 2,3-Diamino-2,3-dideoxyhexuronic acids and both 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids have been found in *P. aeruginosa* for the first time in nature. Most amino sugars are N-acetylated but formyl, acetimidoyl, (*R*)- and (*S*)-3-hydroxybutanoyl occur as *N*-acyl groups too. Similar OPSs within complex O-serogroups differ in: (1) the pattern of O-acetylation, (2) an *N*-acyl group (acetyl *versus* 3-hydroxybutanoyl), (3) a monosaccharide (QuiN *versus* FucN, ManN3NA *versus* LGulN3NA, the presence of lateral Glc), and (4) a linkage (α 1-3 *versus* α 1-2 or β 1-3, α 1-4 *versus* β 1-4).

Another bacterium well studied in respect to the O-antigen structure is *Pseudo-monas syringae*, an important phytopathogen that infects a wide range of plants. The OPSs of *P. syringae* and related species are linear D- or L-rhamnan, a mixed D/L-rhamnan or branched polysaccharides with a rhamnan backbone and side chains of Rha, Fuc, GlcNAc or Fuc3NAc [240, 241, 277, 278]. In several D-rhamnan-based OPSs, Rha may be O-methylated. Characteristic features of the OPSs of this group are (1) irregularity owing to a non-stoichiometric glycosylation or O-methylation, (2) the presence of O-units of different types in one strain, (3) O-antigen diversity within one pathovar, and (4) sharing an OPS by different pathovars.

Structures of the OPSs have been determined also in an ubiquitous microorganism P. fluorescens, a phytopathogen P. cichorii, a mushroom pathogen P. tolaasii, a mushroom-associated bacterium P. reactans, a rhizosphere colonizer P. putida and several other *Pseudomonas* species. They are diverse in composition and include various 6-deoxyamino sugars (QuiN, LQuiN, FucN, Fuc3N, Fuc4N, QuiN4N), which may bear uncommon N-acyl groups, such as (S)-3-hydroxybutanoyl, N-acetyl-L-alanyl and 3-hydroxy-2,3-dimethyl-5-oxoprolyl. The last substituent resides on Qui3N in the OPSs of both P. fluorescens IMV 2366 and 361, which differ only in one monosaccharide (LRha versus L6dTal4Ac) (Table 3.23). The OPS of the type strain P. fluorescens ATCC 13525 is structurally related to that of several P. syringae strains [240, 241]. The OPS of P. fluorescens ATCC 49271 is a homoglycan composed of a partially 8-O-acetylated 5-N-acetimidoyl-7-N-acetyl derivative of Leg. Essentially the same homopolymer is the O-antigen of Legionella pneumophila serogroup 1 [67, 279]. The OPS of P. corrugate contains a derivative of a unique higher sugar 5,7-diamino-5,7,9-trideoxynon-2-ulosonic acid [280]; both OPS structure and configuration of the acid remain to be determined. Pseudomonas sp. (former P. stutzeri) OX1 has an OPS consisting of two 4-amino-4,6dideoxyhexose derivatives, Rha4NAc and Fuc4NFo, but in the presence of the azo dye Orange II, it produces another, acidic OPS with such rarely occurring constituents as LGulNAcA and an amide of GalNAcA with L-serine. LGulNAcA in the amide form is present also in the OPS of P. tolaasii.

3.3.2.6 Moraxellaceae

Bacteria of the genus *Acinetobacter* are soil organisms, which participate in mineralization of various organic compounds. Several species are a key source of hospital infections in debilitated patients and are responsible for cases of communityacquired meningitis and pneumonia. The OPS structures have been studied in *A. baumanni* as well as several other species and unnamed DNA groups. A sugar pyruvic acid acetal is a component of the only known OPS of *A. calcoaceticus* (DNA group 1), whereas other strains of this species produce R-type LPSs. The OPSs of *A. haemolyticus* (DNA group 4) are similar in the presence of various 2-amino-2-deoxyhexuronic acids and derivatives of QuiN4N. The OPSs of *Acinetobacter* (DNA group 2) are either neutral or acidic due to the presence of hexuronic acids (GlcA, GalNAcA, GlcNAc3NAcA) or a derivative of Leg. The other OPSs studied, including those of *A. junii* and *A. lwoffii* (DNA groups 5 and 8,

P. fluorescens A	3)LRha(α 1-3)LRha(α 1-2)LRha(α 1-		
(ATCC 13525 ¹) [281]	Fuc3NAc(α 1-2) $\lfloor (2-1\alpha)Fuc3NAc \rfloor$		
P. fluorescens A	3)LRha2Ac(β1-4)LRha(α1-3)Fuc(α1-		
(IMV 472) [282]	GlcNAc(β 1-2)		
P. fluorescens A (IMV 1152) [283]	3)Fuc4NAc(α1-4)LQuiNAc(α1-3)QuiNAc(β1-		
P. fluorescens B (IMV 247) [284]	2)Qui3N(S3Hb)(β1-2)LRha(α1-4)GalNAcA(α1-3)QuiNAc4N(S3Hb)(α1-		
P. fluorescens C ^a (IMV 2366) [285]	2)Qui3NR(β1-3)LRha(α1-3)FucNAc(α1-		
P. fluorescens 361 ^a [286,287]	4)Qui3NR(β1-3)L6dTal4Ac(α1-3)FucNAc(β1-		
P. fluorescens G	4)Man(α 1-2)Man(α 1-3)GalNAc($\beta\alpha$ 1-		
(111 + 2703) [200]	L6dTal2Ac(\alpha1-3)		
P. fluorescens ATCC 49271 [67,289]	4)Leg5Am7Ac8 $4c(\alpha 2$ -		
P. chlororaphis ssp. aurantiaca	3)LFucNAc(α1-3)LFucNAc(α1-3)QuiNAc4NAc(β1-		
(P. aurantiaca) [290]	2); ErroNA ((1,1,2))(); (2))(A ((21,2)); ErroNA ((1,1,2))(); (NA ((1,1,2)))		
D mutida [202]	S)LrucNAc(a1-2)QuiSNAc(p1-5)LrucNAc(a1-5)QuiNAc(a1-		
P. pullad [292]	$2)Kna(\alpha 1-3)Kna(\alpha 1-3)Man(\beta 1-2)Kna(\alpha 1-3)Kna(\beta 1-2)Kna(\alpha 1-3)Kna(\alpha 1-3)Kna(\beta 1-3)Kna(\beta 1-3)Kna(\alpha 1-3)Kna(\alpha 1-3)Kna(\beta 1-3)Kn$		
P. reactans [293]	3)QuiN(LAIaAc)4N(LAIaAc)(β 1-3)GicNAm(α 1-3)QuiNAc4NAc(α 1-		
P. tolaasii [294]	4)LGulNAcAN3Ac(α1-3)QuiNAc(β1-		
Pseudomonas sp. OX1 [295]	2)Rha4NAc(α 1- <i>Fuc4NFo</i> (α 1-3)		
Pseudomonas sp. OX1 ^c [296]	4)GalNAcA6Ser(α 1-4)ManNAcA(β 1-4)LGulNAcA(α 1-3)QuiNAc4N(S3Hb)(β 1- (3-1 β)Glc		

Table 3.23 Structures of Pseudomonas OPSs

^aR indicates 3-hydroxy-2,3-dimethyl-5-oxoprolyl of unknown configuration.

^bLater, classification of this strain as *P. fluorescens* was questioned.

^cConfiguration of serine has not been determined.

respectively), are all neutral. In *A. lwoffii* EK30 and *Acinetobacter* sp. 4 (DNA group 11), Qui4N and Fuc3N bear uncommon *N*-acyl groups: D-homoseryl (DHse) and (*S*)-2-hydroxypropanoyl, respectively (Table 3.24). A peculiar feature of three *Acinetobacter* OPSs is alternating *N*-acetyl and *N*-[(*S*)-3-hydroxybutanoyl] groups on Leg, QuiN4N or DHse. The OPSs of *A. baumanni* O7 and O10 have the same main chain, and those of *A. haemolyticus* 57 and 61 differ only in the configuration of the linkage between the O-units.

3.3.2.7 Vibrionaceae

From about 200 V. cholerae O-serogroups, O1 and O139 strains cause Asiatic cholera, whereas others are opportunistic pathogens responsible for travel diarrhea and other enteric diseases. The OPS structures of both pathogenic and several non-O1, non-O139 serogroups have been established and most of them reviewed recently [322]. Homopolymers of (R)- and (S)-2-hydroxypropanoyl derivatives of LRha4N have been found in the O144 and O76 antigens, respectively, and the O1 antigen consists of an (S)-2,4-dihydroxybutanoyl derivative of Rha4N.

A. calcoaceticus 7 [297]	2)Gal4,6Rpyr3Ac(β1-3)GlcNAc(β1-4)GlcA(β1-3)GalNAc(β1-		
A. baumanni O1 [298]	3)GlcNAc(α1-3)GalNAc(β1-		
	$\operatorname{Gal}(\alpha 1-6)$		
A. baumanni O2 [299]	4)Gal(α1-6)Gal(β1-3)GalNAc(β1-		
	(3-1β)GalNAc(3-1α)GalNAc(3-1β)Fuc3N(R3Hb)		
A. baumanni O5 [300,301]	3)GalNAcA(α1-3)LFucNAc(α1-3)GlcNAc(β1-		
	L(4-1α)LFucNAc		
A. baumanni O7 [302]	2)LRha(α1-2)LRha(α1-3)LRha(α1-3)GlcNAc(α1-		
	-(3-1β)GlcNAc(4-1β)LRha		
A. baumanni O10 [303]	2)LRha(α 1-2)LRha(α 1-3)LRha(α 1-3)GlcNAc(α 1-		
	-(3-1α)ManNAc		
A. baumanni O11 ^a [304,305]	4)GalNAc(β1-3)Gal(α1-6)Gal(β1-3)GalNAc(α1-		
	L(6-1β)Glc		
A. baumanni O12ª O23 [306]	3)GalNAc(β1-3)Gal(α1-3)GlcNAc(β1-		
	L(4-1α)GlcNAc(6-1β)Qui3N(R3Hb)		
A. baumanni O16 [305]	6)GlcNAc(α1-4)GalNAc(α1-3)GlcNAc(α1-		
	Glc(β1-3)		
A. baumanni O18 [307]	3)Gal(β1-3)GalNAc(β1-		
	ManNAc(β 1-4)Gal(α 1-4)		
A. baumanni O22 [308]	3)Glc(β1-3)GalNAc(β1-		
	$\operatorname{Gal}(\alpha 1-6)$		
A. baumanni O24 ^b [67,309]	4)Leg5R7Ac(β2-6)GlcNAc(α1-3)LFucNAc(α1-3)GlcNAc(α1-		
4 haumanni ATCC 17061 [210]	3)Gal(21,6)Gl2(81,3)GalNA2(81		
A. baumanni AICC 17901 [510]	5)Gal(u1-0)Gic(p1-5)Gali(Ac(p1-		
A. baumanni ATCC 17901 [310]	GleNAc3NAcA(β1-4) L(6-1β)GleNAc		
A. baumanni [311]	$GlcNAc3NAcA(β1-4) \downarrow (6-1β)GlcNAc$ 3)Qui4NAc(β1-3)GalNAc(α1-4)GalNAc(α1-3)GalNAc(α1-		
A. baumanni [311]	GlcNAc3NAcA(β1-4) \downarrow (6-1β)GlcNAc 3)Qui4NAc(β1-3)GalNAc(α1-4)GalNAc(α1-3)GalNAc(α1- Gal(α1-6) \downarrow		
A. baumanni [311] A. baumanni [312]	$\frac{3}{6} \operatorname{GleNAc3NAcA(\beta 1-4)} \lfloor (6-1\beta) \operatorname{GleNAc} \\ 3) \operatorname{Qui4NAc(\beta 1-3)GalNAc(\alpha 1-4)GalNAc(\alpha 1-3)GalNAc(\alpha 1-6)} \\ \operatorname{Gal(\alpha 1-6)} \rfloor \\ 4) \operatorname{GleNAc6Ac(\alpha 1-4)GalNAcA(\alpha 1-3)QuiNAc4NR(\beta 1-6)} $		
A. baumanni [311] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44	$\begin{array}{c} 3) Gla((\alpha 1-6)Glc(\beta 1-3)) Gla((Ac(\beta 1-2))) Glc(\beta 1-2)) Glc(\beta 1-2)) Glc(\beta 1-3) Glc(\beta 1-3)) Glc(\alpha 1-3) Glc(\alpha 1-3)) Glc(\beta $		
A. baumanni [311] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313]	$\begin{array}{l} 3) Gal(\alpha_{1}-\beta_{3}) Gal(\alpha_{1}-\beta_{1}) Gal(\alpha_{1}-\beta_{3}) Gal(\alpha_{1}-\beta_{$		
A. baumanni [311] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314]	$\begin{array}{l} & (\alpha_{1}-\beta_{2})Gal(\alpha_{1}-\beta_{3})Gal(Ac(\beta_{1}-\beta_{3})Gal(Ac(\beta_{1}-\beta_{3}))Gal(Ac(\beta_{1}-\beta_{3}))Gal(Ac(\alpha_{1}-\alpha_{3}))Gal(Ac(\alpha_{1}-\alpha_{3}))Ga(\alpha_{1}-\alpha_{1}))Gal(Ac(\alpha_{1}-$		
A. baumanni [311] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315]	$\begin{array}{l} & (3) \text{GlcNAc3NAcA}(\beta 1-4) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
A. baumanni [311] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315]	$\begin{array}{l} & (3) \text{GlcNAc3NAcA}(\beta 1-4) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
A. baumanni ATCC 17961 [510] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. junii 65 [316]	$\begin{array}{l} & (3) \text{GleNAc3NAcA}(\beta 1-4) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
A. baumanni ATCC 17901 [510] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. junii 65 [316] A. lwoffii EK30 ⁶ [317]	$\begin{array}{l} & (3) Gal(M=0) Gal(NAc(\beta)^{1-3}) Gal(NAc(\beta)^{1-3}) Gal(NAc(\beta)^{1-3}) Gal(NAc(\alpha)^{1-3}) Gal(\alpha)^{1-3}) Gal(NAc(\alpha)^{1-3}) Gal(\alpha)^{1-3}) Gal((\beta)^{1-3}) Gal((\beta)^{1-3}) Gal((\beta)^{1-3}) Gal((\beta)^{1-3}) Gal((\alpha)^{1-3}) G$		
A. baumanni ATCC 17901 [510] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. junii 65 [316] A. lwoffii EK30 ⁸ [317] A. lwoffii EK67, Acinetobacter sp. VS 15 [318]	$\begin{array}{l} & (3) \text{GlcNAc3NAcA}(\beta 1-4) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
A. baumanni ATCC 17901 [510] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. haemolyticus 61 [315] A. junii 65 [316] A. lwoffii EK30 ⁶ [317] A. lwoffii EK67, Acinetobacter sp. VS-15 [318]	$\begin{array}{l} & (3) \text{Gle(NAc3)} \text{Ac}(\beta 1-4) \downarrow \lfloor (6-1\beta) \text{Gle(NAc} \\ & (3) \text{Qui4NAc}(\beta 1-3) \text{GalNAc}(\alpha 1-4) \text{GalNAc}(\alpha 1-3) \text{GalNAc}(\alpha 1-6) \downarrow \\ & (3) \text{Qui4NAc}(\beta 1-3) \text{GalNAc}(\alpha 1-4) \text{GalNAc}(\alpha 1-3) \text{QuiNAc} \text{4NR}(\beta 1-6) \downarrow \\ & (3) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{Gle(NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{Gle(NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{Gle(NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{Gle(NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc} \text{4NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc} \text{4NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{QuiNAc} \text{4NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{GalNAc}(\alpha 1-3) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{GalNAc}(\alpha 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{GalNAc}(\alpha 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{Gal}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1$		
A. baumanni ATCC 17901 [510] A. baumanni [311] A. baumanni [24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. haemolyticus 61 [315] A. junii 65 [316] A. iwoffii EK30 ⁶ [317] A. iwoffii EK67, Acinetobacter sp. VS-15 [318] Acinetobacter sp. 90 (DNA group 10) [319]	$\begin{array}{l} & (3) \text{Gle(NAc3)} \text{Ac}(\beta 1-4) \downarrow \lfloor (6-1\beta) \text{Gle(NAc} \\ & (3) \text{Qui4NAc}(\beta 1-3) \text{GalNAc}(\alpha 1-4) \text{GalNAc}(\alpha 1-3) \text{GalNAc}(\alpha 1-6) \downarrow \\ & (3) \text{Qui4NAc}(\beta 1-3) \text{GalNAc}(\alpha 1-4) \text{GalNAc}(\alpha 1-3) \text{QuiNAc} \\ & (3) \text{Gle(NAc6} \text{Ac}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc} \\ & (3) \text{Gle(NAc6} \text{Ac}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc} \\ & (2-1\alpha) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{Gle(NAc}(\beta 1-1) \text{LRha}(\alpha 1-3) \text{Gle(NAc}(\beta 1-1) \text{Gle(NAc}(\alpha 1-3) \text{Gle(NAc}(\beta 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc} \\ & (2-1\alpha) \text{LRha}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc} \\ & (3) \text{GalNAcA}(\beta 1-4) \text{LGulNAcA}(\alpha 1-3) \text{QuiNAc} \\ & (3) \text{ManNAcA}(\beta 1-4) \text{LGulNAcA}(\alpha 1-3) \text{QuiNAc} \\ & (3) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{Gal}(\beta 1-3) \text{QuiAAc}(\alpha 1-3) \text{Gal(A}(\beta 1-3) \text{LRha}(\alpha 1-3) LR$		
A. baumanni ATCC 17901 [510] A. baumanni [311] A. baumanni [311] A. baumanni [24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. haemolyticus 61 [315] A. junii 65 [316] A. lwoffii EK30 ⁶ [317] A. lwoffii EK67, Acinetobacter sp. VS-15 [318] Acinetobacter sp. 90 (DNA group 10) [319]	$\begin{array}{l} & (3) \text{Gle(NAc3)} \text{Ac}(\beta 1-4) \downarrow \lfloor (6-1\beta) \text{Gle(NAc} \\ & (3) \text{Qui4NAc}(\beta 1-3) \text{GalNAc}(\alpha 1-4) \text{GalNAc}(\alpha 1-3) \text{GalNAc}(\alpha 1-6) \downarrow \\ & (3) \text{Qui4NAc}(\beta 1-3) \text{GalNAc}(\alpha 1-4) \text{GalNAc}(\alpha 1-3) \text{QuiNAc4} \text{NR}(\beta 1-6) \downarrow \\ & (3) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{GleNAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{GleNAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{GleNAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc4} \text{NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc4} \text{NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc4} \text{NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-4) \text{GalNAcA}(\alpha 1-3) \text{QuiNAc4} \text{NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{QuiNAc4} \text{NAc}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{Gal}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-2) \text{LRha}(\alpha 1-3) \text{LRha}(\alpha 1-3) \text{Gal}(\beta 1-6) \downarrow \\ & (2-1\alpha) \text{LRha}(\alpha 1-4) \text{GalNAc}(1-3) \text{QuiNAc}(\alpha 1-6) \downarrow \\ & (2-1\alpha) \text{GalNAc}(\beta 1-3) \text{Gal}(\alpha 1-4) \text{GalNAc}(\alpha 1-3) \text{Gal}(\alpha 1-6) \downarrow \\ & (2-1\alpha) \text{GalNAc}(\beta 1-3) \text{Gal}(\alpha 1-3) \text{Gal}(\alpha 1-6) \space \\ & (2-1\alpha) \text{GalNAc}(\beta 1-3) \text{Gal}(\alpha 1-3) \text{Gal}(\alpha 1-6) \space \\ & (2-1\alpha) \text{GalNAc}(\beta 1-3) \text{Gal}(\alpha 1-3) \text{GalNAc}(\beta 1-6) \space \\ & (2-1\alpha) \text{GalNAc}(\beta 1-3) \text{Gal}(\alpha 1-6) \space \\ & (2-1\alpha) \text{GalNAc}(\beta 1-6) \space \\ & (2-1\alpha) $		
A. baumanni AICC 17901 [510] A. baumanni [311] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. haemolyticus 61 [315] A. haemolyticus 61 [315] A. haemolyticus 61 [317] A. hwoffii EK30 ⁸ [317] A. lwoffii EK67, Acinetobacter sp. 90 (DNA group 10) [319] Acinetobacter sp. 94 (DNA group 11) [320]	$\begin{array}{l} & (3) Gal(\alpha^{1-6}) Gal(\alpha^{1-3}) Gal(\alpha^{1-6}) Gal(\alpha^{1-3}) Gal(\alpha^{1-6}) Gal(\alpha^{1-3}) Gal(\alpha^{1-6}) Gal(\alpha^{1-3}) Gal(\alpha^{1-6}) Gal(\alpha^{1-3}) Gal(\alpha^{1-6}) Gal(\alpha$		
A. baumanni ATCC 17901 [510] A. baumanni [311] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. haemolyticus 61 [315] A. huoffii EK30 ⁸ [317] A. lwoffii EK30 ⁸ [317] A. lwoffii EK67, Acinetobacter sp. 90 (DNA group 10) [319] Acinetobacter sp. 94 (DNA group 11) [320]	$\begin{aligned} & (\alpha_{1}-\beta_{1}) = (\beta_{1}-\beta_{2}) = (\beta_{1}-\beta$		
A. baumanni ATCC 17961 [510] A. baumanni [311] A. baumanni [311] A. baumanni 24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. hwoffii EK30 ⁸ [317] A. hwoffii EK30 ⁸ [317] A. hwoffii EK67, Acinetobacter sp. 90 (DNA group 10) [319] Acinetobacter sp. 94 (DNA group 11) [320] Acinetobacter sp. 96 (DNA group 11) [321]	$\begin{aligned} & (3) Gal(M=6) Gle(p1-3) Gal(Ac(p1-4)) \\ & (Gle(NAc3) AcA(\beta1-4)) \\ & (Gle(NAc3) AcA(\beta1-3) Gal(NAc(\alpha1-4) Gal(NAc(\alpha1-3) Gal(NAc(\alpha1-6))) \\ & (3) Gle(NAc6) \\ & (\alpha1-6) \\ & (3) Cle(NAc6) \\ & (\alpha1-3) \\ $		
A. baumanni AICC 17901 [510] A. baumanni [311] A. baumanni [24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. haemolyticus 75 [318] Acinetobacter sp. VS-15 [318] Acinetobacter sp. 90 (DNA group 10) [319] Acinetobacter sp. 96 (DNA group 11) [321] Acinetobacter sp. 109	$\begin{aligned} & (3) Gal(M=6) Gle(p1-5) Gal(Ac(p1-5)) Gal(Ac(p1-5)) Gal(Ac(p1-6)) & (Gle(p1-3)) Gal(Ac(\alpha)-4) Gal(Ac(\alpha)-3) Gal(\alpha)-3) Gal(\alpha$		
A. baumanni ATCC 17901 [510] A. baumanni [311] A. baumanni [24 ⁶ [312] Acinetobacter sp. 44 (DNA group 3 [313] A. haemolyticus ATCC 17906 [314] A. haemolyticus 57 [315] A. haemolyticus 57 [315] A. haemolyticus 61 [315] A. haemolyticus 7 [315] A. haemol	$\begin{aligned} & (\alpha 1-6) (\alpha 1-6) (\beta 1-3) (\beta 1-4) (\beta 1-3) $		

 Table 3.24
 Structures of Acinetobacter OPSs

^aAnother OPS having the same structure as the *A. baumanni* O16 antigen is also present. ^bR indicates acetyl or (*S*)-3-hydroxybutanoyl. 2-O-Methylation of the terminal non-reducing Rha4N residue in the O1 antigen results in seroconversion from variant Inaba to Ogawa. There are present also other unusual monosaccharide components, such as ascarylose, DDmanHep and a 5-*N*-acetimidoyl-7-*N*-acetyl derivative of Pse. Several other unusual *N*-acyl groups present on amino sugars are 3,5-dihydroxyhexanoyl, (2R,3R)-3-hydroxy-3-methyl-5-oxoprolyl and *N*-acetyl-L-allothreonyl (Table 3.25). The O139 and O155 antigens, as well as that of *Vibrio mimicus* N-1990, include a cyclic phosphate group on Gal. The O22 and O139 antigens consist of only one O-unit with two colitose residues in each strain. The OPSs of *V. cholerae* O8, O10 and an unclassified strain H11 are similar to those of *Listonella anguillarum* O2a, *E. coli* O64 and *Shewanella algae* 48055, respectively.

Protocol and a second se	
O1 ^a [322]	2)Rha4NR(a1-
O2 [323]	4)QuipNAc(β1-4)Pse5Am7Ac(β2-4)Gal(β1-
O3 ⁶ [324]	2)DDmanHep(α1-4)LFucNAc(α1-3)QuiNAc4NR(β1-
- 20	(3-1a)Asc
O5 ^c [325]	4)ManNAcA(β1-3)QuiNAc4NAc(β1-
	Fuc3NR(α 1-3)
O6 [326]	6)GlcNAc3Ac(α1-3)LRha2Ac(β1-4)GlcNAc(β1-
30.4 prop	-(4-1α)GlcA
O8 [327]	4)GlcNAc3N(LAlaFo)AN(β1-4)ManNAc3NAcAN(β1-
	4)LGulNAc3NAcA(α1-3)QuiNAc4NAc(β1-
O9 [328]	4)Glc(α 1-4)GalNAcA(α 1-3)GalNAcA(α 1-3)GlcNAc(α 1-
	Glc(α1-4)」
O10 [322]	3)ManNAc(α1-4)GlcA(β1-3)Gal(β1-3)GlcNAc(β1-
O21 [329]	7) DDmanHep(β1-3)GlcNAc(β1-
	LRha(α 1-3) (4-1 β)GalNAc
O22 [322]	$GalA3, 4Ac(\beta 1-3)GlcNAc(\alpha 1-4)GalA(\alpha 1-3)QuiNAc(\beta 1-$
	$\lfloor (2-1\alpha) \text{Col} \lfloor (4-1\alpha) \text{Col} \rfloor$
O43 [330]	$3) Qui 4 N (La Thr Ac) (\beta 1-3) Gal p NAc A (\alpha 1-4) Gal NAc (\alpha 1-3) Qui NAc (\alpha 1-3) A (\alpha 1-3) A$
O76 [331]	2)LRha4N(S2Hp)(α1-
O139 [322]	Gal4,6P(β1-3)GlcNAc(β1-4)GalA(α1-3)QuiNAc(β1-
	$[Col(\alpha 1-2)]$ $[(4-1\alpha)Col$
O140 (bioserogroup	2)Rha4NAc(α1-
Hakata [332]	
0144 [333]	2)LRha4N(R2Hp)(α1-
0155 [334]	4) LFuc(α 1-3)FucNAc(β 1-
	$\lfloor (3-1\alpha) \text{GlcNAc}(4-1\alpha) \text{LFuc}(3-1\alpha) \text{Gal}4,6P$
H11 [335]	$4) GalA6 (GroN) (\alpha 1-4) NeuAc (\alpha 2-3) GalA6 (GroN) (\beta 1-3) QuiNAc (\beta 1-3) QuiNA$

 Table 3.25
 Structures of V. cholerae OPSs

^aR indicates (S)-2,4-dihydroxybutanoyl.

^bR indicates 3,5-dihydroxyhexanoyl of unknown configuration.

^cR indicates (2R,3R)-3-hydroxy-3-methyl-5-oxoprolyl.

Among non-cholerae vibrios, there are marine bacteria, including fish pathogens *V. vulnificus* and *V. ordalii*, as well as opportunistic pathogens of humans, such as *V. fluvialis* and *V. mimicus*. Their OPSs contain various unusual components too, e.g. a (*S*)-3-hydroxybutanoyl derivative of LRhaN3N, 2-acetamido-2,6-dideoxy-D-xylo-hexos-4-ulose, a 2-*N*-acetimidoyl derivative of LGalNA, a partially O-acetylated 4-D-malyl derivative of GlcN3N and 3-O-[(*R*)-1-hydroxyethyl]-L-rhamnose (rhamnolactilic acid). The OPS of *V. fluvialis* O19 and *Vibrio* bioserogroup 1875 is a homopolymer of a 3-hydroxypropanoyl derivative of Rha4N; in the latter bacterium, the monosaccharide at the non-reducing end is 2-O-methylated [336]. The SR-type LPS of *V. fluvialis* M-940 has a single heptasaccharide O-unit (Table 3.26). The OPS of *V. alginoluticus* includes di-*N*-acetyllegionaminic acid [67, 337] but the O-unit structure remains unknown.

In the OPSs of a fish pathogen *Listonella* (former *Vibrio*) *anguillarum*, derivatives of amino and diamino sugars and hexuronic acids are abundant (Table 3.27). In strain 1282, an *N*-formyl-L-alanyl derivative of GlcN3NAN at the non-reducing end of the OPS is 4-O-acetylated, and in an unnamed strain, the terminal LQui3NAc residue is 4-O-methylated. The discrimination of strains

	-
V. fluvialis sv. 3 [338]	4)LRha(α1-3)ManNAc(β1-
V. fluvialis OKA-82-708 [339]	2)LRha(α 1-3)LRha(α 1-3)LRha(α 1-3)LRha(α 1- GlcNAc(β 1-2) \int
V. fluvialis AQ-0002B [340]	2)Man(β 1-4)GalNAc(α 1-4)GalA(α 1-3)GlcNAc(α 1- \downarrow (3-1 α)LRha3 <i>R</i> lac
V. fluvialis M-940 [341]	$\label{eq:linear} \begin{split} \mbox{LRha}(\alpha\mbox{1-2})\mbox{LFuc}(\alpha\mbox{1-2})\mbox{GlcA}(\beta\mbox{1-2})\mbox{LFuc}(\alpha\mbox{1-3})\mbox{GlcA}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{GlcAAc}(\beta\mbox{1-4})\mbox{LRha}(\alpha\mbox{1-3})\mbox{LRha}(\alpha1-3$
V. fluvialis O19, Vibrio bioserogroup 1875 [342,343]	2)Rha4N(3Hp)(α1-
V. fluvialis AA-18239 [344]	4)GalNAc(α1-2)Ribf(β1-
V. mimicus N-1990 [345]	4)GalNAc(α1-3)GalNAc(β1-2)Gal4,6P(β1-3)GalNAc(α1-
V. mimicus W-26768 [346]	3)Qui3N(R3Hb)(β1- GalNAc(α1-2)]
V. ordalii O2 ^a [347,348]	4)GlcNAc3N(LAlaFo)AN(β1-4)GlcNAc3NAmA(β1- 4)LGulNAc3NAcA(α1-3)Sug-(β1-
V. vulnificus CECT 4602 ^b [349]	4)GlcNAc(α 1-3)LRha(α 1-3)GlcNAc(β 1- \lfloor (3-1 β)LRhaNAc3N(S3Hb)
V. vulnificus YJ016 [350]	3)LGalNAmA(α 1-3)QuiNAc4NAc(β 1-3)LFuc(α 1- 3)GlcNAc(α 1-
	(4-1β)GicNAc6Ac
V. vulnificus CECT 5198° [253]	4)GlcNAc3NRAN(β1-4)LGalNAmA(α1-3)QuiNAc(α1-

Table 3.26 Structures of other <i>vibrio</i> sp. OP:	S
--	---

^aSug indicates 2-acetamido-2,6-dideoxy-D-xylo-hexos-4-ulose.

^bThe presence of $\sim 20\%$ (*R*)-3-hydroxybutanoyl group reported [349] could be due to a partial racemization in the course of acid hydrolysis.

^cR indicates 4-D-malyl or 2-O-acetyl-4-D-malyl.

L. anguillarum O2a; O2b ^a [347,351,352]	4)GlcNAc3N(LAlaR)AN(β1-4)ManNAc3NAmA(β1- 4)LGulNAc3NAcA(α1-3)QuiNAc4NAc(β1-
L. anguillarum 1282 [352]	4)GlcNAc3N(LAlaFo)AN(β1-4)ManNAc3NAmA(β1- 4)Qui3NAc(β1-3)FucNAc4NAc-(α1-
L. anguillarum V-123 ⁶ [353]	3)GalNAcAN(α1-4)GalNFoA(α1-3)QuiNAc(α1-3)Qui4NR(β1-
L. anguillarum ^c [354]	4)LQui3NAc(β1-4)LQui3NAc(β1- QuiNAc(α1-2)

 Table 3.27
 Structures of L. anguillarum OPSs

^aR indicates Fo in serotype O2a or Ac in serotype O2b [351].

^bR indicates 2,4-dihydroxy-3,3,4-trimethyl-5-oxoprolyl of unknown configuration.

^cPresumably, an *O*-propanoyl group is present at position 3 or 4 of QuiNAc.

of O2a and O2b serotypes is based on the nature of a 3-*N*-acyl group on GlcN3NAN, which is either *N*-formyl-L-alanyl or *N*-acetyl-L-alanyl, respectively.

3.3.2.8 Xanthomonadaceae

Xanthomonas campestris and related species cause several plant diseases. Their OPS structures have been examined [240, 278]. With a few exceptions, the OPSs have a D- or L-rhamnan backbone and many from them have Xyl or LXyl side chains. In *X. campestris* pv. *pruni*, there are three sites of non-stoichiometric xylosylation of the main chain, and totally 0 to 2 LXyl residues per O-unit are present (Table 3.28). The OPSs of *X. campestris* pv. *vitians* and *X. fragariae* have main chains of α 1-3- and β 1-3-linked LRha residues, which lack strict regularity.

Table 3.28	Structures	of Xanthomonas	OPSs
------------	------------	----------------	------

X. campestris pv. begoniae [240]	2)LRha(α 1-3)LRha(α 1-3)LRha(α 1- LXyl(β 1-2) $\lfloor (4-1\beta)LXyl \rfloor$
X. campestris pv. campestris 8004 [355]	3)Rha(α1-3)Rha(β1- Fuc3NAc(α1-2)
X. campestris pv. malvacearum [356]	2)Rha3Me(α 1-3)Rha(α 1-3)Rha(α 1- Fucf(α 1-4)
X. campestris pv. manihotis [240]	2)LRha(α 1-2)LRha(α 1-3)LRha(β 1- Xyl(β 1-2)
X. campestris pv. phaseoli var. fuscans [356]	2)Rha(α1-3)Rha(α1-3)Rha(α1-
X. campestris pv. pruni [357]	2)LRha(α 1-2)Glc(α 1-3)LRha(α 1- LXyl(β 1-4) \downarrow LXyl(β 1-3) \downarrow LXyl(β 1-4) \downarrow
X. campestris pv. vignicola [240]	2)Rha(α 1-2)Rha(α 1-3)Rha(β 1- Rha(α 1-3) $\ \ \ \ \ \ \ \ \ \ \ \ \ $
X. campestris NCPPB 45 [240]	3)GalA(α 1-2)LRha(α 1-2)LRha(α 1-3)LRha(α 1-3)Gal(β 1- \lfloor (4-1 α)LRha
X. campestris 642 [240]	2)LRha(α 1-3)LRha(α 1-2)LRha(α 1-3)LRha(α 1-3)LRha(α 1-3)LRha(α 1- Xyl(β 1-2) $\int \lfloor (4-1\beta)Xyl \rfloor$
X. cassavae [278]	3)Rha(β1-3)Rha4NAc(α1- Xyl(β1-2)」
In the former, parts of the polysaccharide chains are linear and the others bear α 1-2-linked Fuc3NAc residues [240, 278], and in the latter, the rhamnan is decorated with α 1-2-linked Fuc residues [240]. The OPS of *X. campestris* NCPPB 45 is exceptionally acidic due to the presence of GalA.

Stenotrophomonas (Xanthomonas or Pseudomonas) maltophilia is an emerging opportunist human pathogen, which can causes blood-stream infections and pneumonia with considerable morbidity in immunosuppressed patients. The OPSs of these bacteria are neutral, and most O-units are branched tri- and tetra-saccharides (Table 3.29). As in *X. campestris*, Xyl and Rha in both enantiomeric forms occur in many O-serogroups, and several xylorhamnans are structurally related in the two

O1 ^a [358]	3)L6dTal2Ac(α1-3)GlcNAc(β1-
	Araf(a1-6)
O2 [359]	4)Man(α 1-3)LRha(α 1-
	LXyl(β1-2)
O3 [360]	3)Fuc(α1-3)GlcNAc(β1-
	-(4-1α)Fuc4NAc
O4 [361]	2)Rha(α 1-3)Rha(α 1-3)Rha(α 1-
	$Xyl(\beta 1-2) \downarrow \lfloor (4-1\beta)Xyl \rfloor$
O6 [362]	3)LRha(α1-3)GlcNAc(β1-
	Xyl(β1-4)
O7 [363]	2)Rha(α 1-3)Rha(α 1-3)Rha(α 1-
O8 [364]	2)LRha(α 1-3)LRha(α 1-4)LRha(α 1-
	LXyl3Me(β1-4)
O10 [365]	2)LRha(β 1-2)LRha(α 1-2)LRha(α 1-
	LXyl(β1-3)
O12/O27 [366]	3)Rha(β1-3)Rha4NAc(α1-3)Rha4NAc(α1-3)Rha4NAc(α1-
	(2-1 α)Fuc3NAc
O16 ^b [367]	3)ManNAc(β1-4)GlcNAc(β1-
	$\operatorname{Rib}(\alpha 1-4)$
O18 [361]	2) $LRha(\alpha 1-3)LRha(\alpha 1-3)LRha(\alpha 1-$
	$LXyl(\beta 1-2) \downarrow \lfloor (4-1\beta)LXyl$
O19 [368]	3)LRha(β1-4)LRha(α1-3)Fuc(α1-
	$\operatorname{Glc}(\alpha 1-3)$
O20 [369]	2)Man(α1-3)Rha(β1-2)Rha(α1-2)Rha(α1-
O21 [370]	6)GlcNAc(α1-4)GalNAc(α1-
NO 122 - EAGURA	$Araf(\alpha 1-3)$
O25 [370]	6)GlcNAc(α1-4)GalNAc(α1-

 Table 3.29
 Structures of S. maltophilia OPSs

^aThe location of the *O*-acetyl group is tentative.

^bThe OPS is non-stoichiometrically O-acetylated at unknown position.

species. The O4 and O18 antigens have the same structure but the constituent monosaccharides, Xyl and Rha, are either D or L, respectively. The O8 antigen contains 3-*O*-methyl-L-xylose as a component of each O-unit, and the O1 antigen is presumably terminated with 3-*O*-methyl-6-deoxytalose. Whereas Xyl is always pyranosidic, two other constituent pentoses, Ara and Rib, are present in the furanose form. Other uncommon monosaccharides, including L6dTal, Fuc3NAc, Fuc4NAc and Rha4NAc, are components of the OPSs. A linear D-rhamnan of serogroup O7 has the same structure as the common polysaccharide antigen of *P. aeruginosa* [9] and the O-antigen of several strains of *P. syringae* [240, 241, 277, 278] and *X. campestris* pv. *phaseoli*. A 6)GlcNAc(α 1-4)GalNAc(α 1- backbone of the O21 and O25 antigens is shared by several *Citrobacter* strains [78].

3.3.2.9 Other Families

Francisella tularensis from the family Francisellaceae is the etiologic agent of tularemia and one of the most virulent Gram-negative bacteria considered as a biological weapon or bioterrorist agent. From four subspecies, ssp. *tularensis* is the most infective and fatal for humans, whereas ssp. *novicida* is virulent for mice but not humans. The OPS common for *F. tularensis* ssp. *tularensis* and *holarctica* (types A and B) has a tetrasaccharide O-unit with two residues of GalNAcA, both in the amide form, and one residue each of QuiNAc and Qui4NFo [371]:

 $2) Qui4NFo(\beta1-4) GalNAcAN(\alpha1-4) GalNAcAN(\alpha1-3) QuiNAc(\beta1-3) QuiNA(\beta1-3) QuiNA(\beta1-$

The 4)GalNAcAN(α 1-4)GalNAcAN(α 1- disaccharide fragment of this O-antigen is shared by *F. tularensis* ssp. *novicida*, in which QuiNAc is replaced by QuiNAc4NAc and Qui4NFo by the third GalNAcAN residue [371]:

 $4) GalNAcAN(\alpha 1-4) GalNAcAN(\alpha 1-4) GalNAcAN(\alpha 1-3) QuiNAc4NAc(\alpha 1-3) QuiNAc4NA(\alpha 1-3) QuiNA(\alpha 1-3) QuiNAc4NA(\alpha 1-3) QuiNA(\alpha 1-3) QuiNA($

A fish pathogen *Francisella victoria* possesses a non-repetitive polysaccharide part of the LPS containing 20 monosaccharides as well as alanyl, 3-aminobutanoyl and 4-acetamido-3-hydroxy-3-methyl-5-oxoprolyl on Qui3N, Qui4N and Fuc4N [372].

Legionella pneumophila from the family Legionellaceae is a facultative intracellular bacterium and the cause of legionellosis, pneumonia with sometimes-fatal progression. From 15 existing O-serogroups, strains of serogroup 1 are most often isolated from environmental samples and clinical specimens. Their O-antigen is polylegionaminic acid 4)Leg5Am7Ac(α 2-, which is 8-O-acetylated in part of the strains and mostly nonacetylated in the others [67, 279]. Accordingly, serogroup 1 strains are divided into the Pontiac and non-Pontiac groups. The O-antigen of *L. pneumophila* serogroup 2 and most other non-1 serogroups, except for serogroups 7 and 13, is a homopolymer of a similar derivative of 4-epilegionaminic acid 4)4eLeg5Am7Ac(α 2-, which is also 8-O-acetylated to a different extent (10–90%)

H. alkaliantarctica [375]	3)LRha(β 1-4)LRha(α 1-3)LRha(α 1-
H. magadiensis [376,377]	4)Glc(β1-3)Gal(β1- and Glc(α1-4) [⊥]
	4)LGulNAcA(a1-4)LGulNAcA(a1-6)Glc(a1-
H. pantelleriensis [374]	2)GlcA4Slac(β1-4)GlcA(β1-4)GalNAcA(α1-3)LQuiNAc(β1-
H. stevensii [378]	4)Glc(β1-3)Gal(β1- Glc(α1-4)」

Table 3.30 Structures of Halomonas OPSs

[67, 373]. Both Leg and 4-eLeg have been found in *L. pneumophila* for the first time in nature.

The O-antigens have been studied in four species of halophilic bacteria of the genus *Halomonas* (family Halomonadaceae) (Table 3.30). The OPS of *H. alkaliantarctica* is an L-rhamnan, and that of *H. pantelleriensis* is highly acidic due to the presence of GlcA, GalNAcA and an ether of GlcA with (S)-lactic acid. The latter OPS is unusual in that an L-configurated monosaccharide, LQuiNAc, is the first sugar of the O-unit [374]. *H. magadiensis* (former *H. magadii*) produces two OPSs, one neutral (major) and one acidic enriched in LGulNAcA. The neutral OPS of *H. magadiensis* is shared by *H. stevensii*.

The OPS of the marine bacterium *Marinomonas communis* classified to the family Ocenospirillaceae is a 2)LRha(α 1-3)LRha(α 1-3)LRha(α 1- rhamnan [379], which is shared by several *P. syringae* strains [241, 278].

The OPS of a mesophilic chemolithotroph *Acidithiobacillus* (*Thiobacillus*) *ferrooxidans* from the family Acidithiobacillaceae includes both rhamnose enantiomers and 3-O-methyl-L-rhamnose as a component of the O-unit [380]:

```
3)Glc(\alpha1-3)Rha(\alpha1-3)LRha(\alpha1-3)Glc(\beta1-
LRha3Me(\alpha1-4)\rfloor
```

3.3.3 α -Proteobacteria

3.3.3.1 Rhizobiaceae, Xanthobacteraceae

Rhizobacteria are unique in their ability to interact with roots of legumes and to form nitrogen-fixing nodules. The OPSs of *Rhizobium*, *Mesorhizobium* and *Sinorhizobium* (both former *Rhizobium* too) from the family Rhizobiaceae have a lipophilic character due to the abundance of 6-deoxyhexoses (Rha, LRha, LFuc, 6dTal, L6dTal), *O*-methyl and *O*-acetyl groups [381, 382] (Table 3.31).

A short-chain OPS of *R. etli* consisting of five O-units is enriched in O-methylated sugars, including methyl ester of GlcA present in the majority of the O-units. It is increased in the content of 2-O-methyl-L-fucose in bacteroids isolated from root nodules of the host plant *Phaseolus vulgaris* or in bacterial cultures grown in the presence of anthocyanin as compared with cultures grown

R. etli ^a [383,384]	4)GlcA6Me(β1-4)LFuc2Me(α1-
	6dTal3Me(α1-3)
R. leguminosarum bv. viciae 3841 [387]	4)Glc3NAmA(β1-4)LFuc2Ac(α1-3)LQuiNAc(α1-
	6dTal2Ac3Me4Me(α1-3)
R. leguminosarum bv. viciae 5523 ^a [388]	4)Glc(α1-3)QuiNAc(α1-
R. leguminosarum bv. trifolii 4s [382]	3)LRha(α1-3)LRha(α1-3)LRha(α1-4)GlcNAc(β1-
	$ManNAc(\alpha 1-2)$
R. leguminosarium bv. trifolii 24 ^b	3)L6dTal(α1-2)LRha(α1-5)Sug(2-
[389,390]	
R. leguminosarum bv. viciae [382]	3)LRha(α 1-3)LFuc(α 1-3)LFuc(α 1-
	$Man(\alpha 1-2)^{J}$
R. tropici [382]	Man(α1-2) ^J 3)6dTal2Ac(α1-3)LFuc(α1-4)Glc(β1-
R. tropici [382] M. amorphae ATCC 19655,	$\frac{Man(\alpha 1-2)^{J}}{3)6dTal2Ac(\alpha 1-3)LFuc(\alpha 1-4)Glc(\beta 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-2)Rha3Me(\alpha 1-$
R. tropici [382] M. amorphae ATCC 19655, M. loti HAMBI 1148 [391]	$\frac{Man(\alpha 1-2)^{J}}{3)6dTal2Ac(\alpha 1-3)LFuc(\alpha 1-4)Glc(\beta 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-2)Rha^{3}Me(\alpha 1-2)L(2-1\beta)GlcNAc4Me}$
R. tropici [382] M. amorphae ATCC 19655, M. loti HAMBI 1148 [391] M. loti NZP2213 [392]	$\frac{Man(\alpha 1-2)^{J}}{3)6dTal2Ac(\alpha 1-3)LFuc(\alpha 1-4)Glc(\beta 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-2)Rha3Me(\alpha 1-1)L(2-1\beta)GlcNAc4Me}{3)L6dTal2Ac(\alpha 1-3)Rha(\alpha 1-2)Rha3Me(\alpha 1-1)L(\alpha 1-1)Rha3Me(\alpha $
R. tropici [382] M. amorphae ATCC 19655, M. loti HAMBI 1148 [391] M. loti NZP2213 [392] M. loti 2213.1 ^c [385]	$Man(\alpha 1-2)^{J}$ 3)6dTal2Ac(\alpha 1-3)LFuc(\alpha 1-4)Glc(\beta 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-2)Rha3Me(\alpha 1-2)L6dTal2Ac(\alpha 1-2)Rha3Me(\alpha 1-2)Rha3M
R. tropici [382] M. amorphae ATCC 19655, M. loti HAMBI 1148 [391] M. loti NZP2213 [392] M. loti 2213.1 ^c [385] M. loti Mlo-13 [386]	$Man(\alpha 1-2)^{J}$ 3)6dTal2Ac(\alpha 1-3)LFuc(\alpha 1-4)Glc(\beta 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-2)Rha3Me(\alpha 1-2)L6dTal2Ac(\alpha 1-3)Rha(\alpha 1-2)L6dTal2R(\alpha 1-3)L6dTal4Ac(\alpha 1-2)LRha3Me(\alpha 1-3)L6dTal4Ac(\alpha 1-2)LRha3Me(\alpha 1-3)L6dTal4Ac(\alpha 1-2)LRha3Me(\alpha 1-3)L6dTal4Ac(\alpha 1-2)LRha3Me(\alpha 1-3)L6dTal4Ac(\alpha 1-2)LRha3Me(\alpha 1-3)L6dTal4Ac(\alpha 1-2)LRha3Me(\alpha 1-3)LRha3Me(\alpha 1-3)LR
R. tropici [382] M. amorphae ATCC 19655, M. loti HAMBI 1148 [391] M. loti NZP2213 [392] M. loti 2213.1 ^c [385] M. loti Mlo-13 [386] M. huakuii [382]	$Man(\alpha 1-2)^{J}$ 3)6dTal2Ac(\alpha 1-3)LFuc(\alpha 1-4)Glc(\beta 1- 3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-2)Rha3Me(\alpha 1- \beta 1-2)L6dTal2Ac(\alpha 1- 3)L6dTal2R(\alpha 1- 2)L6dTal(\alpha 1-3)L6dTal4Ac(\alpha 1-2)LRha3Me(\alpha 1- 2)L6dTal(\alpha 1-3)L6dTal(\alpha 1-2)LRha(\alpha 1- 2)L6dTal(\alpha 1-3)L6dTal(\alpha 1-2)LRha(\alpha 1- 3)L6dTal(\alpha 1-3)L6dTal(\alpha 1-2)LRha(\alpha 1-3)LRha(\alpha 1-3)L6dTal(\alpha 1-3)LRha(\alpha 1-3
R. tropici [382] M. amorphae ATCC 19655, M. loti HAMBI 1148 [391] M. loti NZP2213 [392] M. loti 2213.1 ^e [385] M. loti Mlo-13 [386] M. huakuii [382] S. fredif ^e [393]	$Man(\alpha 1-2)^{J}$ 3)6dTal2Ac(\alpha 1-3)LFuc(\alpha 1-4)Glc(\beta 1-3)Rha(\alpha 1-3)Rha(\alpha 1-3)Rha(\alpha 1-2)Rha3Me(\alpha 1-3)Rha(\alpha 1-2)Rha3Me(\alpha 1-1)^{J}CdTal2Ac(\alpha 1-3)L6dTal2Ac(\alpha 1-2)LRha3Me(\alpha 1-2)LCdTal(\alpha 1-3)L6dTal(\alpha 1-2)LRha3Me(\alpha 1-2)LRha(\alpha 1-2)LRha(\alpha 1-3)LCdTal(\alpha 1-2)LRha(\alpha 1-3)LRha2Ac(\alpha 1-3)Man2Ac6R(\alpha 1-2)LRha2Ac(\alpha 1-3)Man2Ac6R(\alpha 1-2)LRha2Ac(\alpha 1-3)Man2Ac6R(\alpha 1-2)LRha2Ac(\alpha 1-3)Man2Ac6R(\alpha 1-2)LRha2Ac(\alpha 1-3)Man2Ac6R(\alpha 1-2)Man2Ac6R(\alpha 1-2)

Table 3.31 Structures of rhizobial OPSs

^aThe OPS is O-acetylated at unknown position.

^bSug indicates 3-deoxy-*D*-*lyxo*-hept-2-ulosaric acid. The configuration of its linkage remains unknown.

^cR indicates Ac or Me.

under standard laboratory conditions [383]. 2,3,4-Tri-*O*-methylfucose or, in a minority of molecules, 2-*O*-methyl- and 2,3-di-*O*-methylfucose terminates the nonreducing end of the OPS, and a non-repetitive tetrasaccharide with a Kdo residue at the reducing end is located between the O-antigen and the core OS [384].

The OPS of *R. leguminosarium* 3841 is also short and is built up of three to four O-units. It is the only known O-antigen that contains a derivative of 3-amino-3-deoxyhexuronic acid (Glc3NAmA). Another unique components, a dicarboxylic 3-deoxyhept-2-ulosaric acid, is present in the OPS of *R. leguminosarium* bv. *trifolii* (*R. trifolii*) 24. A Fix⁻ mutant of this bacterium has a totally different OPS that lacks L6dTal but is rich in heptose and *O*-methylheptose [384]. The OPS of *M. loti* NZP2213 is a homopolymer of 2-*O*-acetyl-6-deoxy-L-talose with a small content of 2-*O*-methyl-6-deoxy-L-talose, which is significantly higher in a Tn5 mutant 2213.1 with impaired effectiveness of symbiosis with the host plant *Lotus corniculatus* [385]. In contrast, another Tn5 mutant of the same *M. loti* strain, Mlo-13, is symbiotically enhanced [386]. It has structurally different OPS that makes it resistant to bacteriophage A1, which requires the 6-deoxytalan of the parent strain as receptor.

6-Deoxyhexoses are abundant also in the OPSs of the genus *Agrobacterium* from the same family Rhizobiaceae but non-sugar groups are less common (for the known structures of six strains of *A. tumefaciens* and *A. radiobacter* see review [382]). Three O-antigens are homoglycans: (1) a 6-deoxy-L-talan in *A. tumefaciens* C58, which shares the carbohydrate structure with *M. loti* NZP2213 but differs in the pattern of O-acetylation, (2) an L-rhamnan in a *A. radiobacter* strain having the same structure as the main chain in several *P. syringae* strains [240, 241], and (3) a unique α 1-3-linked L-glycero-D-manno-heptan in *A. radiobacter* M2/1. Two OPSs are elaborated by *A. tumefaciens* TT9, one of which is a homopolymer of a 3-O-methylated derivative of Fuc4N, in which the monomers are linked through a 4-N-linked 3,4-dihydroxy-1,3-dimethyl-5-oxoprolyl group [382].

The OPS of *Azorhizobium caulinodans* from the family Xanthobacteraceae is composed of a rarely occurring branched monosaccharide 3-*C*-methylrhamnose, together with rhamnose and 2-*O*-methylrhamnose, whose absolute configurations are either all D or all L [395]:

3)Rha2Me(a1-2)Rha3CMe(\beta1-3)Rha(a1-2)Rha3CMe(\beta1-3)Rha(a1-

3.3.3.2 Other Families

Bacteria of the genus *Brucella* (family Brucellaceae) are facultative intracellular pathogens that cause brucellosis, a group of closely related zoonotic diseases. The bacteria are rather homogeneous in terms of the O-antigens, which are homopolymers of α 1-2-linked Rha4NFo in A-dominant smooth *Brucella* strains but every fifth residue is α 1,3-linked in M-dominant strains [203]. Biotype 1 *B. abortus* and *B. melitensis* carry exclusively A or M epitopes, respectively. The existence of various intermediate AM biotypes in these species and *B. suis* with a reduced proportion of the α -1,3 linkage suggests that the two OPSs are coexpressed. The A-type OPS is characteristic also for *Y. enterocolitica* O9 (Hy 128) [185] that accounts for false-positive serological reactions in the serodiagnostics of the diseases caused by the two bacteria.

Bacteria of the genus *Ohcrobactrum* are taxonomically related to *Brucella* but have no medical importance. The only known OPS structure of *O. anthropi*, 3)GlcNAc(α 1-2)LRha(α 1- [396], resembles those of several *S. marcescens* serogroups [114].

The OPS of *Pseudaminobacter defluvii* THI 051^T (former *Thiobacillus* sp. IFO 14570), the only representative of the family Phyllobacteriaceae studied, consists of three diamino sugars, one of which, 2,4-diamino-2,4-dideoxyglucuronic acid, has not been found elsewhere in nature (the absolute configurations of the monosaccharides have not been proven) [397]:

4)GlcNAc3NAcA(β 1-3)GlcNAc4NAcA(β 1-3)QuiNAm4NAc(α 1-

The O-antigens of several strains of *Acidomonas methanolica* (former *Aceto-bacter methanolicus*) from the family Acetobacteraceae are homopolysacharides

A. brasilense S17 [278]	4)LRha2Me(α 1-3)ManN(S3Hb)(α 1- and
	GlcNAc(β1-4)
	3)LRha(α 1-3)LRha(α 1-2)LRha(α 1-
	Glc(β1-3)
A. lipoferum SpBr17, SR65 ^a [278,399]	3)LRha(α1-3)LRha2Ac(α1-2)LRha(α1-
	Glc(β1-3)-
A. brasilense SR15 [400]	2)Rha(α1-2)Rha(β1-3)Rha(α1-2)Rha(α1-
A. brasilense Sp245, S27, A. lipoferum RG20a [278,400]	2)Rha(α1-2)Rha(β1-3)Rha(α1-3)Rha(α1-2)Rha(α1-
A. brasilense Sp245.5 [401]	6)GalNAc(α1-4)ManNAcA(β1-
A. irakense KBC1 [278]	4)LRha(α1-3)Gal(β1-
	$(3-1\alpha)$ LRha $(3-1\beta)$ Man $(3-1\alpha)$ LRha $(2-1\alpha)$ Galf
A. lipoferum Sp59b [278]	3)Gal(α1-3)Gal(β1-
	$(4-1\beta)$ Man $(3-1\alpha)$ LRha $(2-1\alpha)$ LRha $(3-1\alpha)$ LRha

^aThe OPS of strain SR65 lacks O-acetylation.

of common hexoses (for the structures see review [4]). The OPS of another representative of the family, *Gluconacetobacter* (former *Acetobacter*) *diazotrophicus*, has the following structure [398]:

2)Rib $f(\beta 1-3)$ LRha($\alpha 1-3$)LRha($\alpha 1-2$)LRha($\alpha 1-Glc(\beta 1-2)$

In the family Rhodospirillaceae, studied are nitrogen-fixing soil bacteria of the genus *Azospirillum*, which colonize roots and promote growth of a broad range of plants. In most strains, the OPSs are D-rhamnans or heteroglycans enriched in LRha [278] (Table 3.32). In *A. brasilense* S17, two OPSs have been observed, one of which includes 2-O-methyl-L-rhamnose and a (*S*)-3-hydroxybutanoyl derivative of ManN. The OPSs of *A. irakense* KBC1 and *A. lipoferum* Sp59b are built up of hexasaccharide O-units having the same composition but different structures. A spontaneous mutant Sp245.5 of *A. brasilense* with a changed plasmid switched from the production of a D-rhamnan to an acidic hexosaminoglycan.

The OPS of *Brevundimonas* (*Pseudomonas*) *diminuta* from the family Caulobacteraceae is a partially O-acetylated 4)Man6Ac(α 1-2)Man(α 1- mannan [402].

3.3.4 β-Proteobacteria

3.3.4.1 Burkholderiaceae

Bacteria classified as *Burkholderia* and *Ralstonia* were known formerly as *Pseudo-monas* species. Emergent pathogens *B. mallei* and *B. pseudomallei* are the etiologic agents of glanders and melioidosis, respectively, whereas a closely related

bacterium *B. thailandensis* is avirulent. All these bacteria possess similar OPSs having a 3)L6dTal(α 1-3)Glc(β 1- backbone, where L6dTal may be non-modified or 2-O-acetylated (in all species), 2-O-methylated (in *B. mallei*) or 2-O-methylated and 4-O-acetylated (in *B. thailandensis* and *B. pseudomallei*) [403–406].

Microorganisms of the so-called *B. cepacia* complex (currently 17 species) including *B. cepacia*, *B. cenocepacia*, *B. vietnamiensis* and others are opportunistic pathogens in immunocompromised patients, especially in those with cystic fibrosis and chronic granulomatous disease. There are several O-serotyping schemes of these bacteria based on the O-antigens, whose structures have been reviewed earlier [407, 408] and are updated below. They are rather simple with linear di- or trisaccharide O-units consisting mainly of hexoses, 6-deoxyhexoses and *N*-acetylhexosamines (Table 3.33). In various strains, two structurally different OPSs coexist. The OPS of *B. cepacia* L is one of a few known O-antigens that contain L-glycero-D-manno-heptose, a common component of the LPS core OS of many bacteria (see Chap. 2). The OPS of *B. cepacia* O3 (CIP 8237) is shared by *P. aeruginosa* O15, *S. marcescens* O14 and *Vibrio fluvialis* AA-18239; that of *B. cepacia* O5 by *P. aeruginosa* O14, *Burkholderia plantarii* and *V. fluvialis* sv. 3.

Other representatives of *Burkholderia* with known OPS structures are phytopathogens, such as *B. gladioli* and *B. plantarii* [240], and plant growth-promoting bacteria (*B. phytofirmans*, *B. brasiliensis*) (Table 3.33). One of the OPS components of *B. brasiliensis* is yersiniose A, a branched monosaccharide found also in *Yersinia*.

Another phytopathogen, *Burkholderia caryophylli*, possesses two OPSs, which are homopolymers of unique higher monosaccharides caryophyllose and caryose (reviewed in ref. [240]). Caryophyllan is irregular owing to the presence of both α - (major) and β -linked monosaccharide units, and caryan is built up of blocks of O-acetylated and non-acetylated units. Caryan is linked to the core OS through a QuiNAc primer [416].

Phytopathogenic bacteria *Ralstonia solanacearum* cause wilt in tobacco and other plants. A large group of strains of this species have linear or branched OPSs with similar LRha-LRha-GlcNAc- main chains that differ in the configuration of the GlcNAc linkage, the position of substitution of a Rha residue and a lateral monosaccharide (L-xylose or L-rhamnose) (reviewed in ref. [240]). In many strains, more than one OPS of the sort occur [417]. The OPS of *Ralstonia pickettii* NCTC 11149 has a main chain of the same type [418]:

2)LRha(α 1-2)LRha(β 1-3)LRha2Ac(α 1-3)GlcNAc(β 1-

whereas that of another *R. pickettii* strain [419] resembles several OPSs of *P. aeruginosa* [276]:

4) Rha(α 1-4) LGalNAcA(α 1-3) QuiNAc4NAc(β 1-

B. cepacia O1 [408]	4)Glc(α 1-3)LGlcNAc(α 1- and 4)Glc(α 1-3)LRha(α 1-
B. cepacia O2, E (McKevitt) [408]	2)Man(α 1-2)Man(α 1-4)Gal(β 1- and
	2)Man(α 1-2)Man(α 1-3)Man(β 1-
B. cepacia O2, G (IMV 4137) [408]	2)LRha(α 1-4)Gal(α 1-
B. cepacia O2, G (IMV 598/2) [408]	2)LRha(α1-4)Gal(α1- and 4)Glc(β1-3)Man2Ac(β1-
B. cepacia O3 (CIP 8237) [408]	2)Ribf(β1-4)GalNAc(α1-
B. cepacia O3 (IMV 4176) [408]	4)GalNAc(α1-4)GalNAc(β1- and 2)Ribf(β1-4)GalNAc(α1-
B. cepacia O4, C,	3)Gal(α1-3)Gal(β1-3)GalNAc(β1- and
B. vietnamiensis LMG 6999 [408]	4)LRha(α1-3)GalNAc(α1-3)GalNAc(β1-
B. cenocepacia K56-2 [409]	4)LRha(α1-3)GalNAc(α1-3)GalNAc(β1-
B. cepacia O5 [408]	4)LRha(α1-3)ManNAc(β1-
B.cepacia O6 [408]	3)Galf6Ac(β1-3)Man(β1-
B. cepacia O7, A [408]	4)Glc(β1-3)Man2Ac(β1-
B. cepacia O9 [408]	4)Glc(α1-3)LRha(α1-
B. cepacia B [408]	3)Galf(β1-3)Fuc(α1-
B. cepacia E [408]	3)Fuc(α1-3)GlcNAc(β1-
B. cepacia I [408]	3)Fuc(α1-4)GalNAc(β1- and 3)Fuc(α1-2)LRha(α1-
B. cepacia J [407]	3)LRha(α1-3)Man(β1-4)Man3Ac(α1-
B. vietnamiensis LMG 6998 [408]	3)LRha(α1-3)Man(β1-4)Man(α1-
B. cepacia K [408]	3)Rha(α1-3)Rha(α1-2)Rha(β1-
<i>B. cepacia</i> L [408]	3)Rha(\alpha1-3)Rha(\alpha1-2)LDmanHep(\alpha1-
B. cepacia A (McKevitt) [408]	4)LRha(α1-3)GalNAc(α1-3)GalNAc(β1-
B. cepacia PVFi-5A [408]	3)Gal(α1-6)GlcNAc(α1-4)GalNAc(β1-
B. cepacia [410]	3)Rha(\alpha1-3)Rha(\alpha1-4)Gal(\alpha1- and
	3)Rha(α 1-3)Rha(α 1-2)Rha(α 1-
B. cepacia ASP B 2D [278]	2)Ribf(β1-6)Glc(α1-
B. multivorans C1576 [411]	2)Man(\alpha1-2)Rha(\alpha1-3)Man(\alpha1- and
	2)Man(α1-2)Rha3Me(α1-3)Rha(α1-
B. vietnamiensis LMG 10926 [412]	4)LRha(α 1-2)LRha(α 1-3)LRha(β 1- and
	3)Fuc(α 1-3)Fuc(α 1-3)LRha(α 1-
	$LRha(\alpha 1-2)$
B. anthina LMG 20983 [413]	3)LRha(α1-2)LRha(α1-2)Gal(α1-
B. gladioli pv. gladioli [240]	3)Man2Ac(β1-4)LRha(α1-3)Gal(α1-
B. gladioli pv. agaricicola [414]	3)Man2Ac(α1-2)Rha(α1-4)Gal(β1-
B. gladioli pv. alliicola [240]	4) $LRha(\alpha 1-3)Man2Ac(\beta 1-$
	$\lfloor (2-1\alpha)$ Fuc $(3-1\alpha)$ LRha
B. plantarii [240]	$ 4 \rangle$ LRha(α 1-3)ManNAc(β 1-
B. phytofirmans [278]	3)L6dTal(α 1-3)GalNAc(β 1-
D. /	$Xyl(B1-2) \downarrow (4-1B)Xyl$
B. brasiliensis ⁻ [415]	3)Rha(α 1-3)Rha(α 1-2)Rha(1-
	-(2-1α)Sug

Table 3.33 Structures of Burkholderia OPSs

^aSug indicates yersiniose A.

3.3.4.2 Alcaligenaceae

The genus *Bordetella* includes respiratory pathogens causing a variety of diseases in warm-blooded animals (*B. bronchiseptica, B. hinzii, B. avium*) and whooping cough in humans (*B. pertussis* and *B. parapertussis*). *B. trematum* has been found in human ear and blood infections. Except for *B. pertussis* having no long-chain O-antigen, the OPSs of *Bordetella* are homo- or hetero-glycans containing derivatives of various 2,3-diamino-2,3-dideoxyhexuronic acids (Table 3.34). These are fully amidated in *B. hinzii* or partially amidated in *B. bronchiseptica* and *B. parapertussis*. The OPSs of *B. hinzii* and *B. bronchiseptica* MO149 are rather short having not more than six O-units and that of *B. trematum* not more than two O-units.

The OPSs of *B. bronchiseptica* and *B. parapertussis* are terminated with various *N*-acyl derivatives of 2,3,4-triamino-2,3,4-trideoxygalacturonamide, which, together with variations in the amidation pattern of the uronic acids, confer clear serological distinctions between strains sharing the same LGalNAc3NAcAN homopolysaccharide [421]. The OPSs of *B. hinzii* and *B. bronchiseptica* MO149 are terminated with a 4-O-methylated GalNAc3NAcAN residue. In *B. bronchiseptica, B. parapertussis* and *B. hinzii*, the O-chain is linked to the core OS through a specific non-repetitive pentasaccharide domain enriched in 2,3-diamino-2,3-dideoxyhexuronic acid derivatives too [421, 423]. A portion of this domain proximal to the core OS, called A-band trisaccharide, is also present in the short-chain LPS of *B. pertussis* and synthesized by a pathway similar to that of an O-unit [425].

Taylorella equigenitalis is the cause of contagious equine metritis, a venereal disease of horses, whereas *Taylorella asinigenitali* is not pathogenic. They elaborate quite different acidic OPSs. That of *T. equigenitalis* consists of two partially amidated derivatives of 2,3-diamino-2,3-dideoxyhexuronic acids and is terminated with a 4-O-methylated LGulNAc3NAcA residue [426]:

4)LGulNAc3NAcAN(α1-4)ManNAc3NAcAN(β1-

The OPS of *T. asinigenitali* also has a disaccharide O-unit containing a unique *N*-acetimidoyl derivative of GlcNA [427]:

3)GlcNAmA(\beta1-3)QuiNAc4NAc(\beta1-

Alcaligenes faecalis shares the OPS structure with S. maltophilia O4 [428].

B. avium ^a [420]	4)GlcNAm3N(3Hb)A(β1-
B. bronchiseptica, B. parapertussis [421]	4)LGalNAc3NAcAN(α1-
B. bronchiseptica MO149 [422]	4)GlcNAc3NAcAN(β1-4)LGalNAc3NAcAN(α1-
B. hinzii [422,423]	$4) GlcNAc3NAcAN(\beta 1-4) GlcNAc3NAcAN(\beta 1-4) LGalNAc3NAcAN(\alpha 1-1) LGALAAN(\alpha 1-1) LGALAA$
B. trematum [424]	4)ManNAc3NAmA(β1-4)ManNAc3NAmA(β1-3)FucNAc(α1-

Table 3.34 Structures of Bordetella OPSs

^aThe absolute configuration of the 3-hydroxybutanoyl group has not been determined.

3.3.4.3 Other Families

The OPS structures have been established for several soil- or/and water-inhabiting β -proteobacteria, including *Naxibacter alkalitolerans* from the family Oxalobacteraceae, *Sphaerotilus natans*, a non-classified bacterium of the order Burkholderiales, and *Chromobacterium violaceum* from the family Neisseriaceae (Table 3.35). The last bacterium has the only known OPS that contains D-glycero-D-galacto-heptose (DDgalHep).

3.3.5 ε-Proteobacteria

3.3.5.1 Campylobacteraceae

Campylobacter jejuni is a common cause of human gastroenteritis and is associated with postinfection autoimmune arthritis and neuropathy (Guillain-Barré syndrome). Molecular mimicry between the R-type LPS of *C. jejuni* and gangliosides in peripheral nerves plays a crucial role in the pathogenesis. Structures of LPS-associated polysaccharides have been established in various *C. jejuni* serotypes but later found to be capsular polysaccharides not related to LPS [432], whereas LPS is of R-type. The only documented exception is *C. jejuni* 81116, which produces a neutral OPS of the following structure [433]:

6)Glc(α 1-4)Gal(α 1-3)GlcNAc(β 1-GlcNAc(β 1-3) \rfloor

Polysaccharides characterized in several *Campylobacter lari* and *Campylobacter coli* strains do not seem to be O-antigens too. *Campylobacter fetus*, a causative agent of abortion in cattle and sheep, can cause bacteremia and thrombophlebitis in humans. The OPS of serotype A is an α 1-2-linked homopolymer of partially (80–90%) 2-O-acetylated Man [434] and that of serotype B is a 3)Rha(β 1-2)Rha (α 1- rhamnan terminated with 3-O-methylated Rha [435].

3.3.5.2 Helicobacteraceae

Helicobacter pylori is a prevalent gastroduodenal pathogen of humans, which colonizes gastric mucosa. Once established, infection may persist in the stomach for life and is associated with active inflammation of gastric mucosa leading to gastritis, gastric and duodenal ulcer and increasing risk of gastric cancer. The LPSs of *H. pylori* have generally a poly(*N*-acetyl-β-lactosamine) chain, which in most strains is L-fucosylated to various degrees (see reviews [436, 437]). In several

N. alkalitolerans [429]	3)FucNAc(α1-2)Qui3N(S3Hb)(β1-2)Rha(α1-4)Gal(β1-
S. natans ^a [430]	4)Glc(α1-3)Rha(α1-3)Rha(α1-3)Rha(α1-3)Rha(α1-
C. violaceum [431]	4)DDgalHep(α1-2)LRha(α1-4)DDgalHep(β1-3)GlcNAc(α1-

Table 3.35 Structures of OPSs from other families of β-proteobacteria

^aThe absolute configurations of the monosaccharides have not been determined.

strains, an additional non-stoichiometric decoration of the main chain with Glc or Gal (Sug) has been reported [436, 438]:

```
3)Gal(\beta1-4)GlcNAc(\beta1- or 3)Gal(\beta1-4)GlcNAc(\beta1-

LFuc(\alpha 1-3)^{\perp} LFuc(\alpha 1-3)^{\perp} LFuc(\alpha 1-3)^{\perp} LFuc(\alpha 1-3)^{\perp}
```

The terminal non-reducing unit usually carries one or two LFuc residues giving rise to Le^x trisaccharide or Le^y tetrasaccharide, respectively, which are interconvertible upon phase variation [438]. Less often, the OPS chain is terminated with another Lewis or related blood group antigenic determinant. In polylactosamine-lacking strains of *H. pylori* and several less studied non-human *Helicobacter* species, like *H. mustelae* from ferrets [436], the antigenic determinants may be expressed on the LPS core OS. These features have multiple biological effects on pathogenesis and disease outcome, including gastric adaptation due to molecular mimicry of Lewis antigens [437].

In *H. pylori* LPSs, there are also other core OS-linked polymers, such as heptans and glucans [436, 437]. Atypically of *H. pylori*, the O-antigen of strains D1, D3 and D6 is a 2)Man3CMe(α 1-3)LRha(α 1-3)Rha(α 1- heteropolysaccharide composed of 3-*C*-methyl-D-mannose and both D- and L-rhamnose [439].

3.3.6 Flavobacteria

Flavobacteriaceae is the only family studied in the class Flavobacteria. Marine bacteria of the genus *Flavobacterium* are fish pathogens and are also associated with infectious diseases in humans. The OPSs of *F. columnare* A contains a keto amino sugar, namely 2-acetamido-2,6-dideoxy-D-*xylo*-hexos-4-ulose (Sug) [440] and is structurally related to the OPS of *Pseudoalteromonas rubra* [253]:

```
4)GlcNAcA3Ac(\beta1-4)LFucNAm3Ac(\alpha1-3)Sug(\alpha1-
```

An unusual 4-N-[(3S,5S)-3,5-dihydroxyhexanoyl] derivative of QuiN4N (QuiNAc4NR) is a component of the trisaccharide O-unit of F. psychrophilum [441]:

2) LRha(α 1-4) LFucNAcA(α 1-3) QuiNAc4NR(α 1-

The OPS of another fish pathogen *Tenacibaculum maritimum* (former *Flexibacter maritimus*) includes a unique higher sugar 5-acetamido-8-amino-3,5,7,8,9pentadeoxy-7-[(*S*)-3-hydroxybutanoylamino]non-2-ulosonic acid. The C-4–C-7 fragment of the acid has the β -L-*manno* configuration, whereas the configuration at C-8 is unknown. It is linked to the neighbouring QuiN4N residue through O-2 of a (*S*)-2-hydroxy-5-glutaryl group at the N-4 of the latter [442] (Fig. 3.3).

Fig. 3.3 Structure of the OPS of Tenacibaculum maritimum (former Flexibacter maritimus) [442]

The structures of the OPSs of two marine bacteria of the genus *Cellulophaga* have been established. That of *C. fucicola* contains a di-*N*-acetyl derivative of Pse [443]:

4)Pse5Ac7Ac(β 2-4)Gal(β 1-4)Glc(β 1-

The OPS of *C. fucicola* is acidic too due to the presence of GlcA [444]:

2)Man(β 1-3)Man2Ac(β 1-4)GlcA(β 1-3)GlcNAc(α 1-

3.3.7 Other Classes

Fusobacterium necrophorum (class Fusobacteria, family Fusobacteriaceae) is an anaerobic bacterium associated with pyogenic infections in animals and humans. It has a teichoic acid-like O-antigen with a highly unusual polyalcohol, 2-amino-2-deoxy-2-C-methylpentonic acid (R), whose configuration remains unknown [445]:

```
4)R(5-P-4)Glc(\alpha1-3)LFucNAm(\alpha1-3)QuiNAc4N(S3Hb)(\beta1-
```

The genus *Pectinatus* from the family Veillonellaceae (class Clostridia) includes strictly anaerobic beer spoilage bacteria. The OPS of *P. frisingensis* consists of α - and β -linked L6dAlt, both in the furanose form [446]:

```
2)L6dAltf(\beta 1-3)L6dAltf(\beta 1-2)L6dAltf(\alpha 1-L6dAlt f(\alpha 1-2)
```

The OPS of *P. cerevisiiphilus* contains a fucofuranose residue as a component of the 2)Fucf(β 1-2)Glc(α 1- discaccharide O-unit [446].

The genus *Porphyromonas* (class Bacteroidia, family Bacteroidaceae) includes etiologic agents for periodontal disease in adults (*P. gingivalis*) and animals: cats and dogs (*P. circumdentaria*). The OPS of *P. gingivalis* is distinguished by a non-stoichiometric phosphorylation of a rhamnose residue with phosphoethanolamine [447]:

3)Gal(α 1-6)Glc(α 1-4)LRha2PEtN(α 1-3)GalNAc(β 1-

The LPS of this bacterium has another phosphorylated branched α -mannan chain [448]. The OPS of *P. circumdentaria* consists of hexoses and *N*-acetylhexosamines only [449]:

 $6)Glc(\beta 1-6)Gal(\beta 1-6)Gal(\beta 1-3)GlcNAc(\beta 1-3)GalNAc(\beta 1$

Bacteroides vulgatus from the same family is involved in the aggravation of colitis. It has a linear OPS with the 4)LRha(α 1-3)Man(β 1- disaccharide O-unit and a rhamnose residue at the non-reducing end [450].

Acknowledgements Y. A. K. is supported by the Russian Foundation for Basic Research (grants 10-04-00598 and 10-04-90047).

References

- Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic Press, New York, pp 287–363
- Jann K, Jann B (1984) Structure and biosynthesis of O-antigens. In: Rietschel ET (ed) Chemistry of endotoxin (Handbook of endotoxin, vol. 1). Elsevier, Amsterdam, pp 138–186
- Lindberg B (1998) Bacterial polysaccharides: components. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 237–273
- 4. Knirel YA, Kochetkov NK (1994) The structure of lipopolysaccharides of Gram-negative bacteria. III. The structure of O-antigens. Biochemistry (Moscow) 59:1325–1383
- Wilkinson SG (1996) Bacterial lipopolysaccharides: themes and variations. Prog Lipid Res 35:283–343
- Jansson P-E (1999) The chemistry of O-polysaccharide chains in bacterial lipopolysaccharides. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York, pp 155–178
- Knirel YA (2009) O-Specific polysaccharides of Gram-negative bacteria. In: Moran A, Brennan P, Holst O, von Itzstein M (eds) Microbial glycobiology: structures, relevance and applications. Elsevier, Amsterdam, pp 57–73
- Kuhn H-M, Meier-Dieter U, Mayer H (1988) ECA, the enterobacterial common antigen. FEMS Microbiol Lett 54:195–222
- Knirel YA, Kocharova NA (1995) Structure and properties of the common polysaccharide antigen of *Pseudomonas aeruginosa*. Biochemistry (Moscow) 60:1499–1507
- Castric P, Cassels FJ, Carlson RW (2001) Structural characterization of the *Pseudomonas* aeruginosa 1244 pilin glycan. J Biol Chem 276:26479–26485
- Isshiki Y, Matsuura M, Dejsirilert S, Ezaki T, Kawahara K (2001) Separation of 6-deoxyheptane from a smooth-type lipopolysaccharide preparation of *Burkholderia pseudomallei*. FEMS Microbiol Lett 199:21–25
- Gajdus J, Glosnicka R, Szafranek J (2006) Primary structure of Salmonella spp. O antigens. Wiad Chemiczne 60:621–653
- Wilkinson SG (1977) Composition and structure of bacterial lipopolysaccharides. In: Sutherland IW (ed) Surface carbohydrates of the prokaryotic cell. Academic Press, London, pp 97–175
- Hellerqvist CG, Lindberg B, Samuelsson K, Lindberg AA (1971) Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide from *Salmonella paratyphi* A var. *durazzo*. Acta Chem Scand 25:955–961

- Hellerqvist CG, Lindberg B, Svensson S, Holme T, Lindberg AA (1969) Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide from *Salmonella typhimurium* LT2. Carbohydr Res 9:237–241
- Svenson SB, Lönngren J, Carlin N, Lindberg AA (1979) Salmonella bacteriophage glycanases: endorhamnosidases of Salmonella typhimurium bacteriophages. J Virol 32:583–592
- Szafranek J, Kumirska J, Czerwicka M, Kunikowska D, Dziadziuszko H, Glosnicka R (2006) Structure and heterogeneity of the O-antigen chain of *Salmonella* Agona lipopolysaccharide. FEMS Immunol Med Microbiol 48:223–236
- Kaczynski Z, Gajdus J, Dziadziuszko H, Stepnowski P (2009) Chemical structure of the somatic antigen isolated from *Salmonella* Abortusequi (O4). J Pharm Biomed Anal 50:679–682
- Hellerqvist CG, Larm O, Lindberg B, Holme T, Lindberg AA (1969) Structural studies on the O-specific side chains of the cell wall lipopolysaccharide from *Salmonella bredeney*. Acta Chem Scand 23:2217–2222
- 20. Di Fabio JL, Brisson J-R, Perry MB (1989) Structure of the lipopolysaccharide antigenic O-chain produced by *Salmonella livingstone* (O:6,7). Biochem Cell Biol 67:278–280
- Lindberg B, Leontein K, Lindquist U, Svenson SB, Wrangsell G, Dell A, Rogers M (1988) Structural studies of the O-antigen polysaccharide of *Salmonella thompson*, serogroup C₁ (6,7). Carbohydr Res 174:313–322
- Di Fabio JL, Brisson J-R, Perry MB (1989) Structure of the lipopolysaccharide antigenic O-chain produced by *Salmonella ohio* (0:6,7). Carbohydr Res 189:161–168
- Di Fabio JL, Perry MB, Brisson J-R (1988) Structure of the antigenic O-polysaccharide of the lipopolysaccharide produced by Salmonella eimsbuttel. Biochem Cell Biol 66:107–115
- Hellerqvist CG, Hoffman J, Lindberg A, Lindberg B, Svensson S (1972) Sequence analysis of the polysaccharides from *Salmonella newport* and *Salmonella kentucky*. Acta Chem Scand 26:3282–3286
- Torgov VI, Shibaev VN, Shashkov AS, Rozhnova SS (1990) Structural studies of the O-specific polysaccharide from *Salmonella kentucky* strain 98/39 (O:8, H:i, Z6). Carbohydr Res 208:293–300
- Jann K, Westphal O (1975) Microbial polysaccharides. In: Sela M (ed) The antigens, vol III. Academic Press, New York, pp 1–125
- Rahman MM, Guard-Petter J, Carlson RW (1997) A virulent isolate of Salmonella enteritidis produces a Salmonella typhi-like lipopolysaccharide. J Bacteriol 179:2126–2131
- Brooks BW, Perry MB, Lutze-Wallace CL, MacLean LL (2008) Structural characterization and serological specificities of lipopolysaccharides from *Salmonella enterica* serovar Gallinarum biovar Pullorum standard, intermediate and variant antigenic type strains. Vet Microbiol 126:334–344
- Hellerqvist CG, Lindberg B, Svensson S, Holme T, Lindberg AA (1969) Structural studies on the O-specific side chains of the cell wall lipopolysaccharides from *Salmonella typhi* and *S. enteridis*. Acta Chem Scand 23:1588–1596
- Szafranek J, Gajdus J, Kaczynski Z, Dziadziuszko H, Kunikowska D, Glosnicka R, Yoshida T, Vihanto J, Pihlaja K (1998) Immunological and chemical studies of *Salmonella haarlem* somatic antigen epitopes. I. Structural studies of O-antigen. FEMS Immunol Med Microbiol 21:243–252
- Nghiem HO, Himmelspach K, Mayer H (1992) Immunochemical and structural analysis of the O polysaccharides of *Salmonella zuerich* [1,9,27, (46)]. J Bacteriol 174:1904–1910
- 32. L'vov VL, Yakovlev AV, Shashkov AS (1989) Study of the structure of the O-specific polysaccharide from *Salmonella anatum* using ¹H and ¹³C NMR spectroscopy. Bioorg Khim 9:1660–1663
- Szafranek J, Kaczynska M, Kaczynski Z, Gajdus J, Czerwicka M, Dziadziuszko H, Glosnicka R (2003) Structure of the polysaccharide O-antigen of Salmonella Aberdeen (O:11). Pol J Chem 77:1135–1140

- 34. Perepelov AV, Liu B, Senchenkova SN, Shevelev SD, Feng L, Shashkov AS, Wang L, Knirel YA (2010) The O-antigen of *Salmonella enterica* O13 and its relation to the O-antigen of *Escherichia coli* O127. Carbohydr Res 345:1808–1811
- Di Fabio JL, Brisson J-R, Perry MB (1988) Structure of the major lipopolysaccharide antigenic O-chain produced by Salmonella carrau (0:6, 14, 24). Carbohydr Res 179:233–244
- Brisson J-R, Perry MB (1988) The structure of the two lipopolysaccharide O-chains produced by Salmonella boecker. Biochem Cell Biol 66:1066–1077
- Di Fabio JL, Brisson J-R, Perry MB (1989) Structural analysis of the three lipopolysaccharides produced by *Salmonella madelia* (1,6,14,25). Biochem Cell Biol 67:78–85
- 38. Liu B, Perepelov AV, Guo D, Shevelev SD, Senchenkova SN, Shashkov AS, Feng L, Wang L, Knirel YA (2011) Structural and genetic relationships of two pairs of closely related O-antigens of *Escherichia coli* and *Salmonella enterica: E. coli* O11/S. *enterica* O16 and *E. coli* O21/S. *enterica* O38. FEMS Immunol Med Microbiol 61:258–268
- Perepelov AV, Li D, Liu B, Senchenkova SN, Guo D, Shashkov AS, Feng L, Knirel YA, Wang L (2011) Structural and genetic characterization of the closely related O-antigens of *Escherichia coli* O85 and *Salmonella enterica* O17. Innate Immun 17:164–173
- Vinogradov E, Nossova L, Radziejewska-Lebrecht J (2004) The structure of the O-specific polysaccharide from *Salmonella cerro* (serogroup K, O:6,14,18). Carbohydr Res 339: 2441–2443
- Knirel YA, Perepelov AV, Senchenkova SN, Liu B, Feng L, Wang L (2010) New structures of Salmonella enterica O-antigens and their relationships with O-antigens of Escherichia coli. In: Abstracts of the 25th international carbohydrate symposium, Tokyo, Japan, 1–6 August 2010
- Kumirska J, Dziadziuszko H, Czerwicka M, Lubecka EA, Kunikowska D, Siedlecka EM, Stepnowski P (2011) Heterogeneous structure of O-antigenic part of lipopolysaccharide of *Salmonella* Telaviv (serogroup O:28) containing 3-acetamido-3,6-dideoxy-D-glucopyranose. Biochemistry (Moscow) 76:780–790
- Kumirska J, Szafranek J, Czerwicka M, Paszkiewicz M, Dziadziuszko H, Kunikowska D, Stepnowski P (2007) The structure of the O-polysaccharide isolated from the lipopolysaccharide of *Salmonella* Dakar (serogroup O:28). Carbohydr Res 342:2138–2143
- 44. Bundle DR, Gerken M, Perry MB (1986) Two-dimensional nuclear magnetic resonance at 500 MHz: the structural elucidation of a *Salmonella* serogroup N polysaccharide antigen. Can J Chem 64:255–264
- 45. Perry MB, Bundle DR, MacLean L, Perry JA, Griffith DW (1986) The structure of the antigenic lipopolysaccharide O-chains produced by *Salmonella urbana* and *Salmonella* godesberg. Carbohydr Res 156:107–122
- 46. Kenne L, Lindberg B, Söderholm E, Bundle DR, Griffith DW (1983) Structural studies of the O-antigens from Salmonella greenside and Salmonella adelaide. Carbohydr Res 111:289–296
- Gajdus J, Kaczynski Z, Smietana J, Stepnowski P (2009) Structural determination of the O-antigenic polysaccharide from *Salmonella* Mara (O:39). Carbohydr Res 344:1054–1057
- Perry MB, MacLean LL (1992) Structure of the polysaccharide O-antigen of Salmonella riogrande O40 (group R) related to blood group A activity. Carbohydr Res 232:143–150
- Perepelov AV, Liu B, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structure of the O-polysaccharide of *Salmonella enterica* O41. Carbohydr Res 345:971–973
- 50. Senchenkova SN, Perepelov AV, Shevelev SD, Shashkov AS, Knirel YA, Liu B, Feng L, Wang L (2010) The completed *Salmonella enterica* O-antigen structure elucidation. Paper presented at the 4th Baltic meeting on microbial carbohydrates, Hyytiälä, Finland, 19–22 September 2010
- Perry MB, MacLean LL (1992) Structural characterization of the O-polysaccharide of the lipopolysaccharide produced by *Salmonella milwaukee* O:43 (group U) which possesses human blood group B activity. Biochem Cell Biol 70:49–55

- Perepelov AV, Liu B, Senchenkova SN, Shashkov AS, Guo D, Feng L, Knirel YA, Wang L (2010) Structure and gene cluster of the O-polysaccharide of *Salmonella enterica* O44. Carbohydr Res 345:2099–2101
- 53. Shashkov AS, Vinogradov EV, Knirel YA, Nifant'ev NE, Kochetkov NK, Dabrowski J, Kholodkova EV, Stanislavsky ES (1993) Structure of the O-specific polysaccharide of *Salmonella arizonae* O45. Carbohydr Res 241:177–188
- 54. Perepelov AV, Wang Q, Senchenkova SN, Shashkov AS, Feng L, Wang L, Knirel YA (2009) Structure of O-antigen and characterization of O-antigen gene cluster of *Salmonella enterica* 047 containing ribitol phosphate and 2-acetimidoylamino-2,6-dideoxy-L-galactose. Biochemistry (Moscow) 74:416–420
- Gamian A, Jones C, Lipinski T, Korzeniowska-Kowal A, Ravenscroft N (2000) Structure of the sialic acid-containing O-specific polysaccharide from *Salmonella enterica* serovar Toucra O48 lipopolysaccharide. Eur J Biochem 267:3160–3166
- 56. Feng L, Senchenkova SN, Tao J, Shashkov AS, Liu B, Shevelev SD, Reeves P, Xu J, Knirel YA, Wang L (2005) Structural and genetic characterization of enterohaemorrhagic *Escherichia coli* O145 O antigen and development of an O145 serogroup-specific PCR assay. J Bacteriol 187:758–764
- Senchenkova SN, Shashkov AS, Knirel YA, Schwarzmüller E, Mayer H (1997) Structure of the O-specific polysaccharide of *Salmonella enterica* ssp. *arizonae* O50 (*Arizona* O9a,9b). Carbohydr Res 301:61–67
- Perepelov AV, Liu B, Guo D, Senchenkova SN, Shashkov AS, Feng L, Wang L, Knirel YA (2011) Structure of the O-antigen of *Salmonella enterica* O51 and its structural and genetic relation to the O-antigen of *Escherichia coli* O23. Biochemistry (Moscow) 76:774–779
- Perepelov AV, Liu B, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2011) Structure of the O-polysaccharide and characterization of the O-antigen gene cluster of *Salmonella enterica* O53. Carbohydr Res 346:373–376
- 60. Keenleyside WJ, Perry M, MacLean L, Poppe C, Whitfield C (1994) A plasmid-encoded *rfb*_{0:54} gene cluster is required for biosynthesis of the O:54 antigen in *Salmonella enterica* serovar Borreze. Mol Microbiol 11:437–448
- 61. Liu B, Perepelov AV, Svensson MV, Shevelev SD, Guo D, Senchenkova SN, Shashkov AS, Weintraub A, Feng L, Widmalm G, Knirel YA, Wang L (2010) Genetic and structural relationships of *Salmonella* O55 and *Escherichia coli* O103 O-antigens and identification of a 3-hydroxybutanoyltransferase gene involved in the synthesis of a Fuc3N derivative. Glycobiology 20:679–688
- 62. Perepelov AV, Liu B, Shevelev SD, Senchenkova SN, Hu B, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structural and genetic characterization of the O-antigen of *Salmonella enterica* O56 containing a novel derivative of 4-amino-4,6-dideoxy-D-glucose. Carbohydr Res 345:1891–1895
- 63. Perepelov AV, Liu B, Senchenkova SN, Guo D, Shevelev SD, Feng L, Shashkov AS, Wang L, Knirel YA (2011) O-antigen structure and gene clusters of *Escherichia* coli O51 and *Salmonella* enterica O57; another instance of identical O-antigens in the two species. Carbohydr Res 346:828–832
- 64. Perepelov AV, Liu B, Shevelev SD, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Relatedness of the O-polysaccharide structures of *Escherichia coli* O123 and *Salmonella enterica* O58, both containing 4,6-dideoxy-4-{*N*-(*S*)-3-hydroxybutanoyl]-D-alanyl}amino-D-glucose; revision of the *E. coli* O123 O-polysaccharide structure. Carbohydr Res 345:825–829
- Perepelov AV, Liu B, Senchenkova SN, Shashkov AS, Guo D, Feng L, Knirel YA, Wang L (2011) Structures of the O-polysaccharides of *Salmonella enterica* O59 and *Escherichia coli* O15. Carbohydr Res 346:381–383
- 66. Perepelov AV, Liu B, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structure and gene cluster of the O-antigen of *Salmonella enterica* O60 containing 3-formamido-3,6-dideoxy-D-galactose. Carbohydr Res 345:1632–1634

- Knirel YA, Shashkov AS, Tsvetkov YE, Jansson P-E, Zähringer U (2003) 5,7-Diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids in bacterial glycopolymers: chemistry and biochemistry. Adv Carbohydr Chem Biochem 58:371–417
- Vinogradov EV, Knirel YA, Kochetkov NK, Schlecht S, Mayer H (1994) The structure of the O-specific polysaccharide of *Salmonella arizonae* O62. Carbohydr Res 253:101–110
- 69. Vinogradov EV, Knirel YA, Lipkind GM, Shashkov AS, Kochetkov NK, Stanislavsky ES, Kholodkova EV (1987) Antigenic polysaccharides of bacteria. 24. The structure of the O-specific polysaccharide chain of the Salmonella arizonae O63 (Arizona O8) lipopoly-saccharide. Bioorg Khim 13:1399–1404
- 70. Liu B, Perepelov AV, Li D, Senchenkova SN, Han Y, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structure of the O-antigen of *Salmonella* O66 and the genetic basis for similarity and differences between the closely related O-antigens of *Escherichia coli* O166 and *Salmonella* O66. Microbiology 156:1642–1649
- Kocharova NA, Vinogradov EV, Knirel YA, Shashkov AS, Kochetkov NK, Stanislavsky ES, Kholodkova EV (1988) The structure of the O-specific polysaccharide chains of the lipopolysaccharides of *Citrobacter* O32 and *Salmonella arizonae* O64. Bioorg Khim 14:697–700
- 72. Vinogradov EV, Knirel YA, Shashkov AS, Paramonov NA, Kochetkov NK, Stanislavsky ES, Kholodkova EV (1994) The structure of the O-specific polysaccharide of *Salmonella arizonae* O21 (*Arizona* 22) containing *N*-acetylneuraminic acid. Carbohydr Res 259:59–65
- 73. Gamian A, Lipinski T, Jones C, Hossam E, Korzeniowska-Kowal A, Rybka J Unpublished data
- 74. Author's unpublished data
- 75. Vinogradov EV, Knirel YA, Lipkind GM, Shashkov AS, Kochetkov NK, Stanislavsky ES, Kholodkova EV (1987) Antigenic polysaccharides of bacteria. 23. The structure of the O-specific polysaccharide chain of the lipopolysaccharide of *Salmonella arizonae* O59. Bioorg Khim 13:1275–1281
- Kocharova NA, Knirel YA, Stanislavsky ES, Kholodkova EV, Lugowski C, Jachymek W, Romanowska E (1996) Structural and serological studies of lipopolysaccharides of *Citrobacter* O35 and O38 antigenically related to *Salmonella*. FEMS Immunol Med Microbiol 13:1–8
- Hoffman J, Lindberg B, Glowacka M, Derylo M, Lorkiewicz Z (1980) Structural studies of the lipopolysaccharide from *Salmonella typhimurium* 902 (Collb drd2). Eur J Biochem 105:103–107
- Knirel YA, Kocharova NA, Bystrova OV, Katzenellenbogen E, Gamian A (2002) Structures and serology of the O-specific polysaccharides of bacteria of the genus *Citrobacter*. Arch Immunol Ther Exp 50:379–391
- 79. Kocharova NA, Mieszala M, Zatonsky GV, Staniszewska M, Shashkov AS, Gamian A, Knirel YA (2004) Structure of the O-polysaccharide of *Citrobacter youngae* O1 containing an α-D-ribofuranosyl group. Carbohydr Res 339:321–325
- Mieszala M, Lipinski T, Kocharova NA, Zatonsky GV, Katzenellenbogen E, Shashkov AS, Gamian A, Knirel YA (2003) The identity of the O-specific polysaccharide structure of *Citrobacter* strains from serogroups O2, O20 and O25 and immunochemical characterisation of *C. youngae* PCM 1507 (O2a,1b) and related strains. FEMS Immunol Med Microbiol 36:71–76
- Katzenellenbogen E, Zatonsky GV, Kocharova NA, Witkowska D, Bogulska M, Shashkov AS, Gamian A, Knirel YA (2003) Structural and serological studies on a new 4-deoxy-*D-arabino*-hexose-containing O-specific polysaccharide from the lipopolysaccharide of *Citrobacter braakii* PCM 1531 (serogroup O6). Eur J Biochem 270:2732–2738
- Kocharova NA, Katzenellenbogen E, Zatonsky GV, Bzozovska E, Gamian A, Shashkov AS, Knirel YA (2010) Structure of the O-polysaccharide of *Citrobacter youngae* PCM 1503. Carbohydr Res 345:2571–2573

- Ovchinnikova OG, Kocharova NA, Katzenellenbogen E, Zatonsky GV, Shashkov AS, Knirel YA, Lipinski T, Gamian A (2004) Structures of two O-polysaccharides of the lipopolysaccharide of *Citrobacter youngae* PCM 1538 (serogroup O9). Carbohydr Res 339:881–884
- 84. Katzenellenbogen E, Kocharova NA, Zatonsky GV, Bogulska M, Rybka J, Gamian A, Shashkov AS, Knirel YA (2003) Structure of the O-specific polysaccharide from the lipopolysaccharide of *Citrobacter gillenii* O11, strain PCM 1540. Carbohydr Res 338:1381–1387
- 85. Katzenellenbogen E, Kocharova NA, Korzeniowska-Kowal A, Bogulska M, Rybka J, Gamian A, Kachala VV, Shashkov AS, Knirel YA (2008) Structure of the glycerol phosphate-containing O-specific polysaccharide and serological studies on the lipopolysaccharides of *Citrobacter werkmanii* PCM 1548 and PCM 1549 (serogroup O14). FEMS Immunol Med Microbiol 54:255–262
- Katzenellenbogen E, Kocharova NA, Toukach FV, Gorska S, Korzeniowska-Kowal A, Bogulska M, Gamian A, Knirel YA (2009) Structure of an abequose-containing O-polysaccharide from *Citrobacter freundii* O22 strain PCM 1555. Carbohydr Res 344:1724–1728
- 87. Katzenellenbogen E, Toukach FV, Kocharova NA, Korzeniowska-Kowal A, Gamian A, Shashkov AS, Knirel YA (2008) Structure of a phosphoethanolamine-containing O-polysaccharide of *Citrobacter freundii* strain PCM1443 from serogroup O39 and its relatedness to the *Klebsiella pneumoniae* O1 polysaccharide. FEMS Immunol Med Microbiol 53:60–64
- Vinogradov E, Nossova L, Perry MB, Kay WW (2005) The structure of the antigenic O-polysaccharide of the lipopolysaccharide of *Edwardsiella ictaluri* strain MT104. Carbohydr Res 340:1509–1513
- Vinogradov E, Nossova L, Perry MB, Kay WW (2005) Structural characterization of the O-polysaccharide antigen of *Edwardsiella tarda* MT 108. Carbohydr Res 340:85–90
- 90. Kocharova NA, Katzenellenbogen E, Toukach FV, Knirel YA, Shashkov AS (2009) Structures of the O-specific polysaccharides of the lipopolysaccharides of *Edwardsiella tarda*. In: Abstracts of the 15th European carbohydrate symposium, Vienna, 19–24 July 2009
- Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves P, Wang L (2008) Structure and genetics of *Shigella* O antigens. FEMS Microbiol Rev 32:627–653, Corrigendum in: FEMS Microbiol. Rev. 34: 606 (2010)
- Stenutz R, Weintraub A, Widmalm G (2006) The structures of *Escherichia coli* O-polysaccharide antigens. FEMS Microbiol Rev 30:382–403
- Beynon LM, Bundle DR, Perry MB (1990) The structure of the antigenic lipopolysaccharide O-chain produced by *Escherichia hermannii* ATCC 33650 and 33652. Can J Chem 68:1456–1466
- 94. Perry MB, Richards JC (1990) Identification of the lipopolysaccharide O-chain of *Escherichia hermannii* (ATCC 33651) as a D-rhamnan. Carbohydr Res 205:371–376
- Perry MB, Bundle DR (1990) Antigenic relationships of the lpopolysaccharides of Escherichia hermannii strains with those of Escherichia coli O157:H7, Brucella melitensis, and Brucella abortus. Infect Immun 58:1391–1395
- 96. Eserstam R, Rajaguru TP, Jansson P-E, Weintraub A, Albert MJ (2002) The structure of the O-chain of the lipopolysaccharide of a prototypal diarrheagenic strain of *Hafnia alvei* that has characteristics of a new species under the genus *Escherichia*. Eur J Biochem 269:3289–3295
- West NP, Sansonetti P, Mounier J, Exley RM, Parsot C, Guadagnini S, Prevost MC, Prochnicka-Chalufour A, Delepierre M, Tanguy M, Tang CM (2005) Optimization of virulence functions through glucosylation of *Shigella* LPS. Science 307:1313–1317
- Perepelov AV, Shevelev SD, Liu B, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structures of the O-antigens of *Escherichia coli* O13, O129 and O135 related to the O-antigens of *Shigella flexneri*. Carbohydr Res 345:1594–1599
- 99. Perepelov AV, L'vov VL, Liu B, Senchenkova SN, Shekht ME, Shashkov AS, Feng L, Aparin PG, Wang L, Knirel YA (2009) A similarity in the O-acetylation pattern of the O-antigens of *Shigella flexneri* types 1a, 1b and 2a. Carbohydr Res 344:687–692

- Kenne L, Lindberg B, Petersson K, Katzenellenbogen E, Romanowska E (1978) Structural studies of *Shigella flexneri* O-antigens. Eur J Biochem 91:279–284
- 101. Perepelov AV, L'vov VL, Liu B, Senchenkova SN, Shekht ME, Shashkov AS, Feng L, Aparin PG, Wang L, Knirel YA (2009) A new ethanolamine phosphate-containing variant of the O-antigen of *Shigella flexneri* type 4a. Carbohydr Res 344:1588–1591
- Kenne L, Lindberg B, Petersson K, Katzenellenbogen E, Romanowska E (1977) Structural studies of the *Shigella flexneri* variant X, type 5a and 5b O-antigens. Eur J Biochem 76:327–330
- 103. Foster RA, Carlin NIA, Majcher M, Tabor H, Ng L-K, Widmalm G (2011) Structural elucidation of the O-antigen of the *Shigella flexneri* provisional serotype 88–893: structural and serological similarities with *Shigella flexneri* provisional serotype Y394 (1c). Carbohydr Res 346:872–876
- 104. Vinogradov E, Frirdich E, MacLean LL, Perry MB, Petersen BO, Duus JØ, Whitfield C (2002) Structures of lipopolysaccharides from *Klebsiella pneumoniae*. Eluicidation of the structure of the linkage region between core and polysaccharide O chain and identification of the residues at the non-reducing termini of the O chains. J Biol Chem 277:25070–25081
- 105. Clarke BR, Cuthbertson L, Whitfield C (2004) Nonreducing terminal modifications determine the chain length of polymannose O antigens of *Escherichia coli* and couple chain termination to polymer export via an ATP-binding cassette transporter. J Biol Chem 279:35709–35718
- 106. Whitfield C, Perry MB, MacLean LL, Yu SH (1992) Structural analysis of the O-antigen side chain polysaccharides in the lipopolysaccharides of *Klebsiella* serotypes O2(2a), O2(2a,2b), and O2(2a,2c). J Bacteriol 174:4913–4919
- MacLean LL, Whitfield C, Perry MB (1993) Characterization of the polysaccharide antigen of *Klebsiella pneumoniae* O:9 lipopolysaccharide. Carbohydr Res 239:325–328
- 108. Kelly RF, Perry MB, MacLean LL, Whitfield C (1995) Structures of the O-antigens of *Klebsiella* serotypes O2(2a,2e), O2(2a,2e,2 h), and O2(2a,2f,2 g), members of a family of related D-galactan O-antigens in *Klebsiella* spp. J Endotoxin Res 2:131–140
- 109. Kelly RF, Severn WB, Richards JC, Perry MB, MacLean LL, Tomas JM, Merino S, Whitfield C (1993) Structural variations in the O-specific polysaccharides of *Klebsiella pneumoniae* serotype O1 and O8 lipopolysaccharide: evidence for clonal diversity in *rfb* genes. Mol Microbiol 10:615–625
- 110. Ansaruzzaman M, Albert MJ, Holme T, Jansson P-E, Rahman MM, Widmalm G (1996) A *Klebsiella pneumoniae* strain that shares a type-specific antigen with *Shigella flexneri* serotype 6. Characterization of the strain and structural studies of the O-antigenic polysaccharide. Eur J Biochem 237:786–791
- 111. Mertens K, Müller-Loennies S, Mamat U (2002) Analyses of the LPS O-antigens of nontypeable *Klebsiella* isolates: identification of two putative new O-serotypes. J Endotoxin Res 8:159–160
- 112. Mertens K, Müller-Loennies S, Stengel P, Podschun R, Hansen DS, Mamat U (2010) Antiserum against *Raoultella terrigena* ATCC 33257 identifies a large number of *Raoultella* and *Klebsiella* clinical isolates as serotype 012. Innate Immun 16:366–380
- 113. Leone S, Molinaro A, Dubery I, Lanzetta R, Parrilli M (2007) The O-specific polysaccharide structure from the lipopolysaccharide of the Gram-negative bacterium *Raoultella terrigena*. Carbohydr Res 342:1514–1518
- 114. Aucken HM, Wilkinson SG, Pitt TL (1998) Re-evaluation of the serotypes of *Serratia marcescens* and separation into two schemes based on lipopolysaccharide (O) and capsular polysaccharide (K) antigens. Microbiology 144:639–653
- 115. Vinogradov E, Petersen BO, Duus JØ, Radziejewska-Lebrecht J (2003) The structure of the polysaccharide part of the LPS from *Serratia marcescens* serotype O19, including linkage region to the core and the residue at the non-reducing end. Carbohydr Res 338:2757–2761
- 116. Aucken HM, Oxley D, Wilkinson SG (1993) Structural and serological characterisation of an O-specific polysaccharide from *Serratia plymuthica*. FEMS Microbiol Lett 111:295–300
- 117. Romanowska E (2000) Immunochemical aspects of *Hafnia alvei* O antigens. FEMS Immunol Med Microbiol 27:219–225

- 118. Katzenellenbogen E, Kocharova NA, Korzeniowska-Kowal A, Gamian A, Bogulska M, Szostko B, Shashkov AS, Knirel YA (2008) Immunochemical studies of the lipopolysaccharides of *Hafnia alvei* PCM 1219 and other strains with the O-antigens containing D-glucose 1-phosphate and 2-deoxy-2-[(*R*)-3-hydroxybutyramido]-D-glucose. Arch Immunol Ther Exp 56:347–352
- 119. Dag S, Niedziela T, Dzieciatkowska M, Lukasiewicz J, Jachymek W, Lugowski C, Kenne L (2004) The O-acetylation patterns in the O-antigens of *Hafnia alvei* strains PCM 1200 and 1203, serologically closely related to PCM 1205. Carbohydr Res 339:2521–2527
- 120. Jachymek W, Petersson C, Helander A, Kenne L, Niedziela T, Lugowski C (1996) Structural studies of the O-specific chain of *Hafnia alvei* strain 32 lipopolysaccharide. Carbohydr Res 292:117–128
- 121. Katzenellenbogen E, Kübler J, Gamian A, Romanowska E, Shashkov AS, Kocharova NA, Knirel YA, Kochetkov NK (1996) Structure and serological characterization of the O-specific polysaccharide of *Hafnia alvei* PCM 1185, another *Hafnia* O-antigen that contains 3-[(*R*)-3-hydroxybutyramido]-3,6-dideoxy-D-glucose. Carbohydr Res 293:61–70
- 122. Katzenellenbogen E, Kocharova NA, Zatonsky GV, Shashkov AS, Korzeniowska-Kowal A, Gamian A, Bogulska M, Knirel YA (2005) Structure of the O-polysaccharide of *Hafnia alvei* strain PCM 1189 that has hexa- to octa-saccharide repeating units owing to incomplete glucosylation. Carbohydr Res 340:263–270
- 123. Gamian A, Romanowska E, Dabrowski U, Dabrowski J (1993) Structure of the O-specific polysaccharide containing pentitol phosphate, isolated from *Hafnia alvei* strain PCM 1191 lipopolysaccharide. Eur J Biochem 213:1255–1260
- 124. Jachymek W, Petersson C, Helander A, Kenne L, Lugowski C, Niedziela T (1995) Structural studies of the O-specific chain and a core hexasaccharide of *Hafnia alvei* strain 1192 lipopolysaccharide. Carbohydr Res 269:125–138
- 125. Niedziela T, Kenne L, Lugowski C (2010) Novel O-antigen of *Hafnia alvei* PCM 1195 lipopolysaccharide with a teichoic acid-like structure. Carbohydr Res 345:270–274
- 126. Katzenellenbogen E, Zatonsky GV, Kocharova NA, Mieszala M, Gamian A, Shashkov AS, Romanowska E, Knirel YA (2001) Structure of the O-specific polysaccharide of *Hafnia alvei* PCM 1196. Carbohydr Res 330:523–528
- 127. Katzenellenbogen E, Romanowska E, Kocharova NA, Shashkov AS, Knirel YA, Kochetkov NK (1995) Structure of the O-specific polysaccharide of *Hafnia alvei* 1204 containing 3,6-dideoxy-3-formamido-D-glucose. Carbohydr Res 273:187–195
- Jachymek W, Czaja J, Niedziela T, Lugowski C, Kenne L (1999) Structural studies of the O-specific polysaccharide of *Hafnia alvei* strain PCM 1207 lipopolysaccharide. Eur J Biochem 266:53–61
- 129. Katzenellenbogen E, Romanowska E, Dabrowski U, Dabrowski J (1991) O-Specific polysaccharide of *Hafnia alvei* lipopolysaccharide isolated from strain 1211. Structural study using chemical methods, gas-liquid chromatography/mass spectrometry and NMR spectroscopy. Eur J Biochem 200:401–407
- 130. Toukach FV, Shashkov AS, Katzenellenbogen E, Kocharova NA, Czarny A, Knirel YA, Romanowska E, Kochetkov NK (1996) Structure of the O-specific polysaccharide of *Hafnia alvei* strain 1222 containing 2-aminoethyl phosphate. Carbohydr Res 295:117–126
- 131. Katzenellenbogen E, Kocharova NA, Zatonsky GV, Kübler-Kielb J, Gamian A, Shashkov AS, Knirel YA, Romanowska E (2001) Structural and serological studies on *Hafnia alvei* O-specific polysaccharide of α-D-mannan type isolated from the lipopolysaccharide of strain PCM 1223. FEMS Immunol Med Microbiol 30:223–227
- Katzenellenbogen E, Kocharova NA, Bogulska M, Shashkov AS, Knirel YA (2004) Structure of the O-polysaccharide from the lipopolysaccharide of *Hafnia alvei* strain PCM 1529. Carbohydr Res 339:723–727
- 133. Katzenellenbogen E, Kocharova NA, Zatonsky GV, Korzeniowska-Kowal A, Shashkov AS, Knirel YA (2003) Structure of the O-specific polysaccharide from the lipopolysaccharide of *Hafnia alvei* strain PCM 1546. Carbohydr Res 338:2153–2158

- 134. Karlsson C, Jansson PE, Wollin R (1997) Structure of the O-polysaccharide from the LPS of a *Hafnia alvei* strain isolated from a patient with suspect yersinosis. Carbohydr Res 300:191–197
- 135. Kubler-Kielb J, Vinogradov E, Garcia Fernandez JM, Szostko B, Zwiefka A, Gamian A (2006) Structure and serological analysis of the *Hafnia alvei* 481-L O-specific polysaccharide containing phosphate in the backbone chain. Carbohydr Res 341:2980–2985
- 136. MacLean LL, Vinogradov E, Pagotto F, Farber JM, Perry MB (2009) Characterization of the O-antigen in the lipopolysaccharide of *Cronobacter (Enterobacter) malonaticus* 3267. Biochem Cell Biol 87:927–932
- 137. MacLean LL, Pagotto F, Farber JM, Perry MB (2009) The structure of the O-antigen in the endotoxin of the emerging food pathogen *Cronobacter (Enterobacter) muytjensii* strain 3270. Carbohydr Res 344:667–671
- 138. Arbatsky NP, Wang M, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structure of the O-antigen of *Cronobacter sakazakii* serotype O1 containing 3-(*N*-acetyl-L-alanyl)amino-3,6-dideoxy-D-glucose. Carbohydr Res 345:2095–2098
- MacLean LL, Pagotto F, Farber JM, Perry MB (2009) Structure of the antigenic repeating pentasaccharide unit of the LPS O-polysaccharide of *Cronobacter sakazakii* implicated in the Tennessee outbreak. Biochem Cell Biol 87:459–465
- 140. Arbatsky NP, Wang M, Shashkov AS, Chizhov AO, Feng L, Knirel YA, Wang L (2010) Structure of the O-antigen of *Cronobacter sakazakii* serotype O2 with a randomly O-acetylated L-rhamnose residue. Carbohydr Res 345:2090–2094
- 141. MacLean LL, Vinogradov E, Pagotto F, Farber JM, Perry MB (2010) The structure of the O-antigen of Cronobacter sakazakii HPB 2855 isolate involved in a neonatal infection. Carbohydr Res 345:1932–1937
- 142. Czerwicka M, Forsythe SJ, Bychowska A, Dziadziuszko H, Kunikowska D, Stepnowski P, Kaczycski Z (2010) Structure of the O-polysaccharide isolated from *Cronobacter sakazakii* 767. Carbohydr Res 345:908–913
- Szafranek J, Czerwicka M, Kumirska J, Paszkiewicz M, Lojkowska E (2005) Repeating unit structure of *Enterobacter sakazakii* ZORB A 741 O-polysaccharide. Pol J Chem 79:287–295
- 144. Moule AL, Kuhl PMD, Galbraith L, Wilkinson SG (1989) Structure of the O-specific polysaccharide from *Enterobacter cloacae* strain N.C.T.C. 11579 (serogroup O10). Carbohydr Res 186:287–293
- 145. Cimmino A, Marchi G, Surico G, Hanuszkiewicz A, Evidente A, Holst O (2008) The structure of the O-specific polysaccharide of the lipopolysaccharide from *Pantoea* agglomerans strain FL1. Carbohydr Res 343:392–396
- 146. Staaf M, Urbina F, Weintraub A, Widmalm G (1999) Structure elucidation of the O-antigenic polysaccharide from the enteroaggregative *Escherichia coli* strain 62D₁. Eur J Biochem 262:56–62
- 147. Karamanos Y, Kol O, Wieruszeski J-M, Strecker G, Fournet B, Zalisz R (1992) Structure of the O-specific polysaccharide chain of the lipopolysaccharide of *Enterobacter agglomerans*. Carbohydr Res 231:197–204
- 148. Knirel YA, Perepelov AV, Kondakova AN, Senchenkova SN, Sidorczyk Z, Rozalski A, Kaca W (2011) Structure and serology of O-antigens as the basis for classification of *Proteus* strains. Innate Immun 17:70–96
- 149. Kocharova NA, Torzewska A, Zatonsky GV, Blaszczyk A, Bystrova OV, Shashkov AS, Knirel YA, Rozalski A (2004) Structure of the O-polysaccharide of *Providencia stuartii* O4 containing 4-(*N*-acetyl-L-aspart-4-yl)amino-4,6-dideoxy-D-glucose. Carbohydr Res 339:195–200
- 150. Zatonsky GV, Bystrova OV, Kocharova NA, Shashkov AS, Knirel YA, Kholodkova EV, Stanislavsky ES (1999) Structure of a neutral O-specific polysaccharide of the bacterium *Providencia alcalifaciens* O5. Biochemistry (Moscow) 64:523–527
- 151. Ovchinnikova OG, Kocharova NA, Wykrota M, Shashkov AS, Knirel YA, Rozalski A (2007) Structure of a colitose-containing O-polysaccharide from the lipopolysaccharide of *Providencia alcalifaciens* O6. Carbohydr Res 342:2144–2148

- 152. Bystrova OV, Zatonsky GV, Borisova SA, Kocharova NA, Shashkov AS, Knirel YA, Kholodkova EV, Stanislavsky ES (2000) Structure of an acidic O-specific polysaccharide of the bacterium *Providencia alcalifaciens* O7. Biochemistry (Moscow) 65:677–684
- 153. Toukach FV, Kocharova NA, Maszewska A, Shashkov AS, Knirel YA, Rozalski A (2008) Structure of the O-polysaccharide of *Providencia alcalifaciens* O8 containing (2 S,4R)-2,4dihydroxypentanoic acid, a new non-sugar component of bacterial glycans. Carbohydr Res 343:2706–2711
- 154. Kocharova NA, Ovchinnikova OG, Maszewska A, Shashkov AS, Arbatsky NP, Knirel YA, Rozalski A (2011) Elucidation of the full O-polysaccharide structure and identification of the oligosaccharide core type of the lipopolysaccharide of *Providencia alcalifaciens* O9. Carbohydr Res 346:644–650
- 155. Parkhomchuk AA, Kocharova NA, Bialczak-Kokot M, Shashkov AS, Chizhov AO, Knirel YA, Rozalski A (2010) Structure of the O-polysaccharide from the lipopolysaccharide of *Providencia alcalifaciens* O12. Carbohydr Res 345:1235–1239
- 156. Kocharova NA, Zatonsky GV, Torzewska A, Macieja Z, Bystrova OV, Shashkov AS, Knirel YA, Rozalski A (2003) Structure of the O-specific polysaccharide of *Providencia rustigianii* O14 containing N^ε-[(S)-1-carboxyethyl]-N^α-(D-galacturonoyl)-L-lysine. Carbohydr Res 338:1009–1016
- 157. Kondakova AN, Vinogradov EV, Lindner B, Kocharova NA, Rozalski A, Knirel YA (2007) Mass-spectrometric studies of *Providencia* SR-form lipopolysaccharides and elucidation of the biological repeating unit structure of *Providencia rustigianii* O14-polysaccharide. J Carbohydr Chem 26:497–512
- 158. Kocharova NA, Zatonsky GV, Bystrova OV, Ziolkowski A, Wykrota M, Shashkov AS, Knirel YA, Rozalski A (2002) Structure of the O-specific polysaccharide of *Providencia* alcalifaciens O16 containing N-acetylmuramic acid. Carbohydr Res 337:1667–1671
- 159. Kocharova NA, Blaszczyk A, Zatonsky GV, Torzewska A, Bystrova OV, Shashkov AS, Knirel YA, Rozalski A (2004) Structure and cross-reactivity of the O-antigen of *Providencia* stuartii O18 containing 3-acetamido-3,6-dideoxy-D-glucose. Carbohydr Res 339:409–413
- 160. Kocharova NA, Maszewska A, Zatonsky GV, Torzewska A, Bystrova OV, Shashkov AS, Knirel YA, Rozalski A (2004) Structure of the O-polysaccharide of *Providencia* alcalifaciens O19. Carbohydr Res 339:415–419
- 161. Kocharova NA, Vinogradov E, Kondakova AN, Shashkov AS, Rozalski A, Knirel YA (2008) The full structure of the carbohydrate chain of the lipopolysaccharide of *Providencia* alcalifaciens O19. J Carbohydr Chem 27:320–331
- 162. Shashkov AS, Kocharova NA, Zatonsky GV, Blaszczyk A, Knirel YA, Rozalski A (2007) Structure of the O-antigen of *Providencia stuartii* O20, a new polysaccharide containing 5,7diacetamido-3,5,7,9-tetradeoxy-L-glycero-D-galacto-non-2-ulosonic acid. Carbohydr Res 342:653–658
- 163. Kocharova NA, Maszewska A, Zatonsky GV, Bystrova OV, Ziolkowski A, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2003) Structure of the O-polysaccharide of *Providencia alcalifaciens* O21 containing 3-formamido-3,6-dideoxy-D-galactose. Carbohydr Res 338:1425–1430
- 164. Ovchinnikova OG, Parkhomchuk NA, Kocharova NA, Kondakova AN, Shashkov AS, Knirel YA, Rozalski A (2009) Further progress in structural studies of lipopolysaccharides of bacteria of the genus *Providencia*. Paper presented at the 15th European carbohydrate symposium, Vienna, Austria, 19–24 July 2009
- 165. Kocharova NA, Vinogradov EV, Borisova SA, Shashkov AS, Knirel YA (1998) Identification of N^{ε} -[(*R*)-1-carboxyethyl]-L-lysine in, and the complete structure of, the repeating unit of the O-specific polysaccharide of *Providencia alcalifaciens* O23. Carbohydr Res 309:131–133
- 166. Kocharova NA, Ovchinnikova OG, Shashkov AS, Maszewska A, Knirel YA, Rozalski A (2011) Structure of the O-polysaccharide of *Providencia alcalifaciens* O25 containing an amide of D-galacturonic acid with N^e-[(S)-1-carboxyethyl]-L-lysine. Biochemistry (Moscow) 76:707–712

- 167. Ovchinnikova OG, Bushmarinov IS, Kocharova NA, Toukach FV, Wykrota M, Shashkov AS, Knirel YA, Rozalski A (2007) New structure for the O-polysaccharide of *Providencia alcalifaciens* O27 and revised structure for the O-polysaccharide of *Providencia stuartii* O43. Carbohydr Res 342:1116–1121
- 168. Ovchinnikova OG, Kocharova NA, Kondakova AN, Shashkov AS, Knirel YA, Rozalski A (2003) New structures of L-fucose-containing O-polysaccharides of bacteria of the genus *Providencia* and the full lipopolysaccharide structure of *Providencia rustigianii* O34. In: Abstracts of the 24th international carbohydrate symposium, Oslo, Norway, 27 July-1 August 2008
- 169. Bushmarinov IS, Ovchinnikova OG, Kocharova NA, Toukach FV, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2006) Structure of the O-polysaccharide from the lipopolysaccharide of *Providencia alcalifaciens* O29. Carbohydr Res 341:1181–1185
- 170. Kocharova NA, Ovchinnikova OG, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2006) The structure of the O-polysaccharide from the lipopolysaccharide of *Providencia* alcalifaciens O30. Carbohydr Res 341:786–790
- 171. Ovchinnikova OG, Kocharova NA, Shashkov AS, Bialczak-Kokot M, Knirel YA, Rozalski A (2009) Structure of the O-polysaccharide from the lipopolysaccharide of *Providencia alcalifaciens* O31 containing an ether of D-mannose with (*2R*,*4R*)-2,4-dihydroxypentanoic acid. Carbohydr Res 344:683–686
- 172. Bushmarinov IS, Ovchinnikova OG, Kocharova NA, Toukach FV, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2007) Structure of the O-polysaccharide and serological cross-reactivity of the lipopolysaccharide of *Providencia alcalifaciens* O32 containing *N*-acetylisomuramic acid. Carbohydr Res 342:268–273
- 173. Torzewska A, Kocharova NA, Zatonsky GV, Blaszczyk A, Bystrova OV, Shashkov AS, Knirel YA, Rozalski A (2004) Structure of the O-polysaccharide and serological crossreactivity of the *Providencia stuartii* O33 lipopolysaccharide containing 4-(*N*-acetyl-D-aspart-4-yl)amino-4,6-dideoxy-D-glucose. FEMS Immunol Med Microbiol 41:133–139
- 174. Kocharova NA, Kondakova AN, Vinogradov E, Ovchinnikova OG, Lindner B, Shashkov AS, Rozalski A, Knirel YA (2008) Full structure of the carbohydrate chain of the lipopoly-saccharide of *Providencia rustigianii* O34. Chem Eur J 14:6184–6191
- 175. Kocharova NA, Ovchinnikova OG, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2007) The structure of the O-polysaccharide from the lipopolysaccharide of *Providencia* alcalifaciens O36 containing 3-deoxy-D-manno-oct-2-ulosonic acid. Carbohydr Res 342:665–670
- 176. Kocharova NA, Bushmarinov IS, Ovchinnikova OG, Toukach FV, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2005) The structure of the O-polysaccharide from the lipopoly-saccharide of *Providencia stuartii* O44 containing L-quinovose, a 6-deoxy sugar rarely occurring in bacterial polysaccharides. Carbohydr Res 340:1419–1423
- 177. Ovchinnikova OG, Kocharova NA, Shashkov AS, Knirel YA, Rozalski A (2009) Antigenic polysaccharides of bacteria. 43. Structure of the O-specific polysaccharide of the bacterium *Providencia alcalifaciens* O46. Bioorg Khim 35:370–375
- 178. Ovchinnikova OG, Kocharova NA, Bakinovskiy LV, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2004) The structure of the O-polysaccharide from the lipopolysaccharide of *Providencia stuartii* O47. Carbohydr Res 339:2621–2626
- 179. Fedonenko YP, Egorenkova IV, Konnova SA, Ignatov VV (2001) Involvement of the lipopolysaccharides of *Azospirilla* in the interaction with wheat seedling roots. Microbiology 70:329–334
- Bushmarinov IS, Ovchinnikova OG, Kocharova NA, Blaszczyk A, Toukach FV, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2004) Structure of the O-polysaccharide of *Providencia stuartii* O49. Carbohydr Res 339:1557–1560
- 181. Kocharova NA, Ovchinnikova OG, Bushmarinov IS, Toukach FV, Torzewska A, Shashkov AS, Knirel YA, Rozalski A (2005) The structure of the O-polysaccharide from the lipopolysaccharide of *Providencia stuartii* O57 containing an amide of D-galacturonic acid with L-alanine. Carbohydr Res 340:775–780

- 182. Ovchinnikova OG, Kocharova NA, Parkhomchuk AA, Bialczak-Kokot M, Shashkov AS, Knirel YA, Rozalski A (2011) Structure of the O-polysaccharide from the lipopolysaccharide of *Providencia alcalifaciens* O60. Carbohydr Res 346:377–380
- 183. Kilcoyne M, Shashkov AS, Senchenkova SN, Knirel YA, Vinogradov EV, Radziejewska-Lebrecht J, Galimska-Stypa R, Savage AV (2002) Structural investigation of the O-specific polysaccharides of *Morganella morganii* consisting of two higher sugars. Carbohydr Res 337:1697–1702
- 184. Shashkov AS, Torgov VI, Nazarenko EL, Zubkov VA, Gorshkova NM, Gorshkova RP, Widmalm G (2002) Structure of the phenol-soluble polysaccharide from *Shewanella putrefaciens* strain A6. Carbohydr Res 337:1119–1127
- Bruneteau M, Minka S (2003) Lipopolysaccharides of bacterial pathogens from the genus Yersinia: a mini-review. Biochimie 85:145–152
- 186. Ovodov YS, Gorshkova RP (1988) Lipopolysaccharides of Yersinia pseudotuberculosis. Khim Prirod Soed 163–171
- 187. Ovodov YS, Gorshkova RP, Tomshich SV, Komandrova NA, Zubkov VA, Kalmykova EN, Isakov VV (1992) Chemical and immunochemical studies on lipopolysaccharides of some *Yersinia* species. A review of some recent investigations. J Carbohydr Chem 11:21–35
- 188. Holst O (2003) Lipopolysaccharides of Yersinia. An overview. Adv Exp Med Biol 529:219–228
- Ho N, Kondakova AN, Knirel YA, Creuzenet C (2008) The biosynthesis and biological role of 6-deoxyheptoses in the lipopolysaccharide O-antigen of *Yersinia pseudotuberculosis*. Mol Microbiol 68:424–447
- 190. Kondakova AN, Shashkov AS, Komandrova NA, Anisimov AP, Skurnik M, Knirel YA Unpublished data
- 191. Kondakova AN, Shaikhutdinova RZ, Ivanov SA, Dentovskaya SV, Shashkov AS, Anisimov AP, Knirel YA (2009) Revision of the O-polysaccharide structure of *Yersinia pseudotuber-culosis* O:1b. Carbohydr Res 344:2421–2423
- 192. De Castro C, Kenyon J, Cunneen MM, Reeves PR, Molinaro A, Holst O, Skurnik M (2011) Genetic characterization and structural analysis of the O-specific polysaccharide of *Yersinia pseudotuberculosis* serotype O:1c. Innate Immun 17:183–190
- 193. Kondakova AN, Ho N, Bystrova OV, Shashkov AS, Lindner B, Creuzenet C, Knirel YA (2008) Structural studies of the O-antigens of *Yersinia pseudotuberculosis* O:2a and mutants thereof with impaired 6-deoxy-D-*manno*-heptose biosynthesis pathway. Carbohydr Res 343:1383–1389
- 194. Kondakova AN, Bystrova OV, Shaikhutdinova RZ, Ivanov SA, Dentovskaya SV, Shashkov AS, Knirel YA, Anisimov AP (2009) Structure of the O-polysaccharide of *Yersinia pseudo-tuberculosis* O:2b. Carbohydr Res 344:405–407
- 195. Kondakova AN, Bystrova OV, Shaikhutdinova RZ, Ivanov SA, Dentovskaya SV, Shashkov AS, Knirel YA, Anisimov AP (2008) Reinvestigation of the O-antigens of *Yersinia pseudotuberculosis*: revision of the O2c and confirmation of the O3 antigen structures. Carbohydr Res 343:2486–2488
- 196. Kondakova AN, Bystrova OV, Shaikhutdinova RZ, Ivanov SA, Dentovskaya SV, Shashkov AS, Knirel YA, Anisimov AP (2009) Structure of the O-antigen of *Yersinia pseudotuberculosis* O:4a revised. Carbohydr Res 344:531–534
- 197. Kondakova AN, Bystrova OV, Shaikhutdinova RZ, Ivanov SA, Dentovskaya SV, Shashkov AS, Knirel YA, Anisimov AP (2009) Structure of the O-antigen of *Yersinia pseudotuberculosis* O:4b. Carbohydr Res 344:152–154
- 198. Zubkov VA, Gorshkova RP, Ovodov YS, Sviridov AF, Shashkov AS (1992) Synthesis of 3,6-dideoxy-4-C-(4¹-hydroxyethyl)hexopyranoses (yersinioses) from 1,6-anhydro-β-Dglycopyranose. Carbohydr Res 225:189–207
- 199. Beczala A, Ovchinnikova OG, Duda KA, Skurnik M, Radziejewska-Lebrecht J, Holst O (2009) Structure of *Yersinia pseudotuberculosis* O:9 O-specific polysaccharide repeating unit resolved. In: Abstracts of the 15th European carbohydrate symposium, Vienna, 19–24 July 2009

- 200. Kenyon JJ, De Castro C, Cunneen MM, Reeves PR, Molinaro A, Holst O, Skurnik M (2011) The genetics and structure of the O-specific polysaccharide of *Yersinia pseudotuberculosis* serotype O:10 and its relationship to *Escherichia coli* O111 and *Salmonella enterica* O35. Glycobiology, doi:10.1093/glycob/cwr010
- 201. Cunneen MM, De Castro C, Kenyon J, Parrilli M, Reeves PR, Molinaro A, Holst O, Skurnik M (2009) The O-specific polysaccharide structure and biosynthetic gene cluster of *Yersinia pseudotuberculosis* serotype O:11. Carbohydr Res 344:1533–1540
- De Castro C, Skurnik M, Molinaro A, Holst O (2009) Characterization of the O-polysaccharide structure and biosynthetic gene cluster of *Yersinia pseudotuberculosis* serotype O:15. Innate Immun 15:351–359
- 203. Meikle PJ, Perry MB, Cherwonogrodzky JW, Bundle DR (1989) Fine structure of A and M antigens from *Brucella* biovars. Infect Immun 57:2820–2828
- 204. Gorshkova RP, Kalmykova EN, Isakov VV, Ovodov YS (1985) Structural studies on O-specific polysaccharides of lipopolysaccharides from *Yersinia enterocolitica* serovars O:1,2a,3, O:2a,2b,3 and O:3. Eur J Biochem 150:527–531
- 205. Gorshkova RP, Isakov VV, Kalmykova EN, Ovodov YS (1995) Structural stidies of O-specific polysaccharide chains of the lipopolysaccharide from *Yersinia enterocolitica* serovar O:10. Carbohydr Res 268:249–255
- 206. Marsden BJ, Bundle DR, Perry MB (1994) Serological and structural relationships between Escherichia coli O:98 and Yersinia enterocolitica O:11,23 and O:11,24 lipopolysaccharide O-antigens. Biochem Cell Biol 72:163–168
- L'vov VL, Gur'yanova SV, Rodionov AV, Gorshkova RP (1992) Structure of the repeating unit of the O-specific polysaccharide of the lipopolysaccharide of *Yersinia kristensenii* strain 490 (O:12,25). Carbohydr Res 228:415–422
- 208. L'vov VL, Guryanova SV, Rodionov AV, Dmitriev BA, Shashkov AS, Ignatenko AV, Gorshkova RP, Ovodov YS (1990) The structure of the repeating unit of the glycerol phosphate-containing O-specific polysaccharide chain from the lipopolysaccharide of *Yersinia kristensenii* strain 103 (O:12,26). Bioorg Khim 16:379–389
- Gorshkova RP, Isakov VV, Zubkov VA, Ovodov YS (1989) Structure of the O-specific polysaccharide of the lipopolysaccharide of *Yersinia frederiksenii* serovar O:16,29. Bioorg Khim 15:1627–1633
- 210. Gorshkova RP, Isakov VV, Nazarenko EL, Ovodov YS, Guryanova SV, Dmitriev BA (1993) Structure of the O-specific polysaccharide of the lipopolysaccharide from *Yersinia kristensenii* O:25,35. Carbohydr Res 241:201–208
- Perry MB, MacLean LL (2000) Structural identification of the lipopolysaccharide O-antigen produced by *Yersinia enterocolitica* serotype O:28. Eur J Biochem 267:2567–2572
- Zubkov VA, Gorshkova RP, Nazarenko EL, Shashkov AS, Ovodov YS (1991) Structure of the O-specific polysaccharide chain of lipopolysaccharide of *Yersinia aldovae*. Bioorg Khim 17:831–838
- Gorshkova RP, Isakov VV, Zubkov VA, Ovodov YS (1994) Structure of O-specific polysaccharide of lipopolysaccharide from *Yersinia bercovieri* O:10. Bioorg Khim 20:1231–1235
- Gorshkova RP, Isakov VV, Nazarenko EL, Shevchenko LS (1997) Structural study of the repeating unit of the O-specific polysaccharide from *Yersinia mollarettii* strain WS 42/90. Bioorg Khim 23:823–825
- Zubkov VA, Nazarenko EL, Gorshkova RP, Ovodov YS (1993) Structure of O-specific polysaccharide of *Yersinia rohdei*. Bioorg Khim 19:729–732
- 216. Beynon LM, Richards JC, Perry MB (1994) The structure of the lipopolysaccharide O-antigen from *Yersinia ruckerii* serotype O1. Carbohydr Res 256:303–317
- 217. Bateman KP, Banoub JH, Thibault P (1996) Probing the microheterogeneity of O-specific chains from *Yersinia ruckeri* using capillary zone electrophoresis/electrospray mass spectrometry. Electrophoresis 17:1818–1828
- Gorshkova RP, Kalmykova EN, Isakov VV, Ovodov YS (1986) Structural studies on O-specific polysaccharides of lipopolysaccharides from *Yersinia enterocolitica* servovars O:5 and O:5,27. Eur J Biochem 156:391–397

- Pieretti G, Corsaro MM, Lanzetta R, Parrilli M, Canals R, Merino S, Tomas JM (2008) Structural studies of the O-chain polysaccharide from *Plesiomonas shigelloides* strain 302–73 (serotype O1). Eur J Org Chem 3149–3155
- 220. Pieretti G, Carillo S, Lindner B, Lanzetta R, Parrilli M, Jimenez N, Regue M, Tomas JM, Corsaro MM (2010) The complete structure of the core of the LPS from *Plesiomonas shigelloides* 302–73 and the identification of its O-antigen biological repeating unit. Carbohydr Res 345:2523–2528
- 221. Taylor DN, Trofa AC, Sadoff J, Chu C, Bryla D, Shiloach J, Cohen D, Ashkenazi S, Lerman Y, Egan W, Schneerson R, Robbins JB (1993) Synthesis, characterization, and clinical evaluation of conjugate vaccines composed of the O-specific polysaccharides of *Shigella dysenteriae* type 1, *Shigella flexneri* type 2a, and *Shigella sonnei* (*Pseudomonas shigelloides*) bound to bacterial toxoids. Infect Immun 61:3678–3687
- 222. Maciejewska A, Lukasiewicz J, Niedziela T, Szewczuk Z, Lugowski C (2009) Structural analysis of the O-specific polysaccharide isolated from *Plesiomonas shigelloides* O51 lipopolysaccharide. Carbohydr Res 344:894–900
- 223. Czaja J, Jachymek W, Niedziela T, Lugowski C, Aldova E, Kenne L (2000) Structural studies of the O-specific polysaccharides from *Plesiomonas shigelloides* strain CNCTC 113/ 92. Eur J Biochem 267:1672–1679
- 224. Niedziela T, Lukasiewicz J, Jachymek W, Dzieciatkowska M, Lugowski C, Kenne L (2002) Core oligosaccharides of *Plesiomonas shigelloides* O54:H2 (strain CNCTC 113/92). Structural and serological analysis of the lipopolysaccharide core region, the O-antigen biological repeating unit and the linkage between them. J Biol Chem 277:11653–11663
- 225. Niedziela T, Dag S, Lukasiewicz J, Dzieciatkowska M, Jachymek W, Lugowski C, Kenne L (2006) Complete lipopolysaccharide of *Plesiomonas shigelloides* O74:H5 (strain CNCTC 144/92). 1. Structural analysis of the highly hydrophobic lipopolysaccharide, including the O-antigen, its biological repeating unit, the core oligosaccharide, and the linkage between them. Biochemistry 45:10422–10433
- 226. Linnerborg M, Widmalm G, Weintraub A, Albert MJ (1995) Structural elucidation of the O-antigen lipopolysaccharide from two strains of *Plesiomonas shigelloides* that share a type-specific antigen with *Shigella flexneri* 6, and the common group 1 antigen with *Shigella flexneri* spp. and *Shigella dysenteriae*. Eur J Biochem 231:839–844
- 227. Jachymek W, Niedziela T, Petersson C, Lugowski C, Czaja J, Kenne L (1999) Structures of the O-specific polysaccharides from *Yokenella regensburgei (Koserella trabulsii)* strains PCM 2476, 2477, 2478, and 2494: high-resolution magic-angle spinning NMR investigation of the O-specific polysaccharides in native lipopolysaccharides and directly on the surface of living bacteria. Biochemistry 38:11788–11795
- Zdorovenko EL, Varbanets LD, Brovarskaya OS, Valueva OA, Shashkov AS, Knirel YA (2011) Lipopolysaccharide of *Budvicia aquatica* 97U124: immunochemical properties and structure. Microbiology 80:372–377
- Valueva OA, Zdorovenko EL, Kachala VV, Varbanets LD, Shubchinskiy VV, Arbatsky NP, Shashkov AS, Knirel YA (2011) Structure of the O-polysaccharide of *Pragia fontium* 27480 containing 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Carbohydr Res 346:146–149
- Zdorovenko EL, Valueva OA, Varbanets L, Shubchinskiy V, Shashkov AS, Knirel YA (2010) Structure of the O-polysaccharide of the lipopolysaccharide of *Pragia fontium* 97U116. Carbohydr Res 345:1812–1815
- 231. Zdorovenko EL, Varbanets LD, Zatonsky GV, Zdorovenko GM, Shashkov AS, Knirel YA (2009) Isolation and structure elucidation of two different polysaccharides from the lipopoly-saccharide of *Rahnella aquatilis* 33071^T. Carbohydr Res 344:1259–1262
- 232. Zdorovenko EL, Varbanets LD, Zatonsky GV, Kachala VV, Zdorovenko GM, Shashkov AS, Knirel YA (2008) Structure of the O-specific polysaccharide of the lipopolysaccharide of *Rahnella aquatilis* 95 U003. Carbohydr Res 343:2494–2497
- 233. Zdorovenko EL, Varbanets LD, Zatonsky GV, Ostapchuk AN (2004) Structure of the O-polysaccharide of the lipopolysaccharide of *Rahnella aquatilis* 1-95. Carbohydr Res 339:1809–1812

- 234. Zdorovenko EL, Varbanets LD, Zatonsky GV, Ostapchuk AN (2006) Structures of two putative O-specific polysaccharides from the *Rahnella aquatilis* 3-95 lipopolysaccharide. Carbohydr Res 341:164–168
- 235. Ray TC, Smith ARW, Wait R, Hignett RC (1987) Structure of the sidechain of lipopolysaccharide from *Erwinia amylovara* T. Eur J Biochem 170:357–361
- 236. Senchenkova SN, Knirel YA, Shashkov AS, Ahmed M, Mavridis A, Rudolph K (2003) Structure of the O-polysaccharide of *Erwinia carotovora* ssp. *carotovora* GSPB 436. Carbohydr Res 338:2025–2027
- 237. Senchenkova SN, Shashkov AS, Knirel YA, Ahmed M, Mavridis A, Rudolph K (2005) Structure of the O-polysaccharide of *Erwinia carotovora* ssp. atroseptica GSPB 9205, containing a new higher branched monosaccharide. Rus Chem Bull Int Ed 54:1276–1281
- 238. Wang Z, Liu X, Garduno E, Garduno RA, Li J, Altman E (2009) Application of an immunoaffinity-based preconcentration method for mass spectrometric analysis of the O-chain polysaccharide of *Aeromonas salmonicida* from *in vitro*- and *in vivo*-grown cells. FEMS Microbiol Lett 295:148–155
- 239. Wang Z, Larocque S, Vinogradov E, Brisson JR, Dacanay A, Greenwell M, Brown LL, Li J, Altman E (2004) Structural studies of the capsular polysaccharide and lipopolysaccharide O-antigen of *Aeromonas salmonicida* strain 80204–1 produced under *in vitro* and *in vivo* growth conditions. Eur J Biochem 271:4507–4516
- Corsaro MM, De Castro C, Molinaro A, Parrilli M (2001) Structure of lipopolysaccharides from phytopathogenic Gram-negative bacteria. Recent Res Dev Phytochem 5:119–138
- Zdorovenko GM, Zdorovenko EL (2010) *Pseudomonas syringae* lipopolysaccharides: Immunochemical characteristics and structure as a basis for strain classification. Microbiology 79:47–57
- Turska-Szewczuk A, Kozinska A, Russa R, Holst O (2010) The structure of the O-specific polysaccharide from the lipopolysaccharide of *Aeromonas bestiarum* strain 207. Carbohydr Res 345:680–684
- 243. Linnerborg M, Widmalm G, Rahman MM, Jansson P-E, Holme T, Qadri F, Albert MJ (1996) Structural studies of the O-antigenic polysaccharide from an *Aeromonas caviae* strain. Carbohydr Res 291:165–174
- 244. Wang Z, Liu X, Li J, Altman E (2008) Structural characterization of the O-chain polysaccharide of *Aeromonas caviae* ATCC 15468 lipopolysaccharide. Carbohydr Res 343:483–488
- 245. Shaw DH, Squires MJ (1984) O-Antigen structure in a virulent strain of *Aeromonas hydrophila*. FEMS Microbiol Lett 24:277–280
- 246. Knirel YA, Shashkov AS, Senchenkova SN, Merino S, Tomas JM (2002) Structure of the O-polysaccharide of *Aeromonas hydrophila* O:34; a case of random O-acetylation of 6-deoxy-L-talose. Carbohydr Res 337:1381–1386
- 247. Wang Z, Vinogradov E, Larocque S, Harrison BA, Li J, Altman E (2005) Structural and serological characterization of the O-chain polysaccharide of *Aeromonas salmonicida* strains A449, 80204 and 80204–1. Carbohydr Res 340:693–700
- 248. Wang Z, Liu X, Dacanay A, Harrison BA, Fast M, Colquhoun DJ, Lund V, Brown LL, Li J, Altman E (2007) Carbohydrate analysis and serological classification of typical and atypical isolates of *Aeromonas salmonicida*: a rationale for the lipopolysaccharide-based classification of *A. salmonicida*. Fish Shellfish Immunol 23:1095–1106
- 249. Shaw DH, Lee Y-Z, Squires MJ, Lüderitz O (1983) Structural studies on the O-antigen of *Aeromonas salmonicida*. Eur J Biochem 131:633–638
- 250. Knirel YA, Senchenkova SN, Jansson P-E, Weintraub A, Ansaruzzaman M, Albert MJ (1996) Structure of the O-specific polysaccharide of an *Aeromonas trota* strain cross-reactive with *Vibrio cholerae* O139 Bengal. Eur J Biochem 238:160–165
- 251. Nazarenko EL, Komandrova NA, Gorshkova RP, Tomshich SV, Zubkov VA, Kilcoyne M, Savage AV (2003) Structures of polysaccharides and oligosaccharides of some Gramnegative marine *Proteobacteria*. Carbohydr Res 338:2449–2457

- 252. Leone S, Silipo A, Nazarenko EL, Lanzetta R, Parrilli E, Molinaro A (2007) Molecular structure of endotoxins from Gram-negative marine bacteria: an update. Mar Drugs 5:85–112
- 253. Shashkov AS, Senchenkova SN, Chizhov AO, Knirel YA, Esteve C, Alcaide E, Merino S, Tomas JM (2009) Structure of a polysaccharide from the lipopolysaccharides of *Vibrio vulnificus* strains CECT 5198 and S3-I2-36, which is remarkably similar to the O-polysaccharide of *Pseudoalteromonas rubra* ATCC 29570. Carbohydr Res 344:2005–2009
- 254. Komandrova NA, Isakov VV, Tomshich SV, Romanenko LA, Perepelov AV, Shashkov AS (2010) Structure of an acidic O-specific polysaccharide of the marine bacterium *Pseudoalteromonas agarivorans* KMM 232 (R-form). Biochemistry (Moscow) 75:623–628
- 255. Perepelov AV, Shashkov AS, Torgov VI, Nazarenko EL, Gorshkova RP, Ivanova EP, Gorshkova NM, Widmalm G (2005) Structure of an acidic polysaccharide from the agardecomposing marine bacterium *Pseudoalteromonas atlantica* strain IAM 14165 containing 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid. Carbohydr Res 340:69–74
- Komandrova NA, Tomshich SV, Isakov VV, Romanenko LA (2001) O-specific polysaccharide of the marine bacterium "Alteromonas marinoglutinosa" NCIMB 1770. Biochemistry (Moscow) 66:894–897
- 257. Nazarenko EL, Perepelov AV, Shevchenko LS, Daeva ED, Ivanova EP, Shashkov AS, Widmalm G (2011) Structure of the O-specific polysaccharide from *Shewanella japonica* KMM 3601 containing 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-talo-non-2-ulosonic acid. Biochemistry (Moscow) 76:791–796
- 258. Kilcoyne M, Perepelov AV, Tomshich SV, Komandrova NA, Shashkov AS, Romanenko LA, Knirel YA, Savage AV (2004) Structure of the O-polysaccharide of *Idiomarina zobellii* KMM 231^T containing two unusual amino sugars with the free amino group, 4-amino-4,6-dideoxy-D-glucose and 2-amino-2-deoxy-L-guluronic acid. Carbohydr Res 339:477–482
- 259. Perry MB, Maclean LM, Brisson JR, Wilson ME (1996) Structures of the antigenic O-polysaccharides of lipopolysaccharides produced by *Actinobacillus actinomycetem-comitans* serotypes a, c, d and e. Eur J Biochem 242:682–688
- Perry MB, MacLean LL, Gmür R, Wilson ME (1996) Characterization of the O-polysaccharide structure of lipopolysaccharide from *Actinobacillus actinomycetemcomitans* serotype b. Infect Immun 64:1215–1219
- Kaplan JB, Perry MB, MacLean LL, Furgang D, Wilson ME, Fine DH (2001) Structural and genetic analyses of O polysaccharide from *Actinobacillus actinomycetemcomitans* serotype f. Infect Immun 69:5375–5384
- 262. Perry MB, Altman E, Brisson J-R (1990) Structural caharacteristics of the antigenic capsular polysaccharides and lipopolysaccharides involved in the serological classification of *Actinobacillus (Haemophilus) pleuropneumoniae* strains. Serodiagn Immunother Infect Dis 4:299–308
- 263. Beynon LM, Griffith DW, Richards JC, Perry MB (1992) Characterization of the lipopolysaccharide O antigens of *Actinobacillus pleuropneumoniae* serotype 9 and 11: antigenic relationships among serotypes 9, 11, and 1. J Bacteriol 174:5324–5331
- 264. Perry MB, MacLean LL, Vinogradov E (2005) Structural characterization of the antigenic capsular polysaccharide and lipopolysaccharide O-chain produced by *Actinobacillus pleuropneumoniae* serotype 15. Biochem Cell Biol 83:61–69
- 265. MacLean LL, Perry MB, Vinogradov E (2004) Characterization of the antigenic lipopolysaccharide O chain and the capsular polysaccharide produced by *Actinobacillus pleuropneumoniae* serotype 13. Infect Immun 72:5925–5930
- 266. Beynon LM, Perry MB, Richards JC (1991) Structure of the O-antigen of *Actinobacillus* pleuropneumoniae serotype 12 lipopolysaccharide. Can J Chem 69:218–224
- 267. Perry MB, MacLean LL (2004) Structural characterization of the antigenic O-polysaccharide in the lipopolysaccharide produced by *Actinobacillus pleuropneumoniae* serotype 14. Carbohydr Res 339:1399–1402

- 268. Monteiro MA, Slavic D, St Michael F, Brisson J-R, MacIinnes JI, Perry MB (2000) The first description of a (1 → 6)-β-D-glucan in prokaryotes: (1 → 6)-β-D-glucan is a common component of *Actinobacillus suis* and is the basis for a serotyping system. Carbohydr Res 329:121–130
- Rullo A, Papp-Szabo E, Michael FS, Macinnes J, Monteiro MA (2006) The structural basis for the serospecificity of *Actinobacillus suis* serogroup O:2. Biochem Cell Biol 84:184–190
- Severn WB, Richards JC (1993) Characterization of the O-polysaccharide of *Pasteurella* haemolytica serotype A1. Carbohydr Res 240:277–285
- 271. Leitch RA, Richards JC (1988) Structure of the O-chain of the lipopolysaccharide of *Pasteurella haemolytica* serotype T3. Biochem Cell Biol 66:1055–1065
- 272. Richards JC, Leitch RA (1989) Elucidation of the structure of the *Pasteurella haemolytica* serotype T10 lipopolysaccharide O-antigen by n.m.r. spectroscopy. Carbohydr Res 186:275–286
- 273. Hood DW, Randle G, Cox AD, Makepeace K, Li J, Schweda EK, Richards JC, Moxon ER (2004) Biosynthesis of cryptic lipopolysaccharide glycoforms in *Haemophilus influenzae* involves a mechanism similar to that required for O-antigen synthesis. J Bacteriol 186:7429–7439
- 274. Knirel YA, Vinogradov EV, Kocharova NA, Paramonov NA, Kochetkov NK, Dmitriev BA, Stanislavsky ES, Lányi B (1988) The structure of O-specific polysaccharides and serological classification of *Pseudomonas aeruginosa*. Acta Microbiol Hung 35:3–24
- 275. Knirel YA (1990) Polysaccharide antigens of *Pseudomonas aeruginosa*. CRC Crit Rev Microbiol 17:273–304
- 276. Knirel YA, Bystrova OV, Kocharova NA, Zähringer U, Pier GB (2006) Conserved and variable structural features in the lipopolysaccharide of *Pseudomonas aeruginosa*. J Endotoxin Res 12:324–336, Corrigendum in: Innate Immun. 16: 274 (2010)
- 277. Knirel YA, Zdorovenko GM (1997) Structures of O-polysaccharide chains of lipopolysaccharides as the basis for classification of *Pseudomonas syringae* and related strains. In: Rudolph K, Burr TJ, Mansfield JW, Stead D, Vivian A, von Kietzell J (eds) *Pseudomonas syringae* pathovars and related pathogens. Kluwer Academic Publishers, Dordrecht, pp 475–480
- 278. Molinaro A, Newman M-A, Lanzetta R, Parrilli M (2009) The structures of lipopolysaccharides from plant-associated Gram-negative bacteria. Eur J Org Chem 5887–5896
- 279. Kooistra O, Lüneberg E, Lindner B, Knirel YA, Frosch M, Zähringer U (2001) Complex O-acetylation in *Legionella pneumophila* serogroup 1 lipopolysaccharide. Evidence for two genes involved in 8-O-acetylation of legionaminic acid. Biochemistry 40:7630–7640
- Corsaro MM, Evidente A, Lanzetta R, Lavermicocca P, Parrilli M, Ummarino S (2002) 5,7-Diamino-5,7,9-trideoxynon-2-ulosonic acid: a novel sugar from a phytopathogenic *Pseudomonas* lipopolysaccharide. Carbohydr Res 337:955–959
- 281. Knirel YA, Zdorovenko GM, Paramonov NA, Veremeychenko SN, Toukach FV, Shashkov AS (1996) Somatic antigens of pseudomonads: structure of the O-specific polysaccharide of the reference strain for *Pseudomonas fluorescens* (IMV 4125, ATCC 13525, biovar A). Carbohydr Res 291:217–224
- 282. Knirel YA, Veremeychenko SN, Zdorovenko GM, Shashkov AS, Paramonov NA, Zakharova IY, Kochetkov NK (1994) Somatic antigens of pseudomonads: structure of the O-specific polysaccharide of *Pseudomonas fluorescens* biovar A strain IMV 472. Carbohydr Res 259:147–151
- 283. Knirel YA, Paramonov NA, Shashkov AS, Kochetkov NK, Zdorovenko GM, Veremeychenko SN, Zakharova IY (1993) Somatic antigens of pseudomonads: structure of the O-specific polysaccharide of *Pseudomonas fluorescens* biovar A strain IMV 1152. Carbohydr Res 243:205–210
- Shashkov AS, Paramonov NA, Veremeychenko SN, Grosskurth H, Zdorovenko GM, Knirel YA, Kochetkov NK (1998) Somatic antigens of pseudomonads: structure of the O-specific

polysaccharide of *Pseudomonas fluorescens* biovar B, strain IMV 247. Carbohydr Res 306:297-303

- 285. Zatonsky GV, Kocharova NA, Veremeychenko SN, Zdorovenko EL, Shapovalova VY, Shashkov AS, Zdorovenko GM, Knirel YA (2002) Somatic antigens of pseudomonads: structure of the O-specific polysaccharide of *Pseudomonas fluorescens* IMV 2366 from (biovar C). Carbohydr Res 337:2365–2370
- 286. Khomenko VA, Naberezhnykh GA, Isakov VV, Solov'eva TF, Ovodov YS, Knirel YA, Vinogradov EV (1986) Structural study of O-specific polysaccharide chain of *Pseudomonas fluorescens* lipopolysaccharide. Bioorg Khim 12:1641–1648
- 287. Naberezhnykh GA, Khomenko VA, Isakov VV, El'kin YN, Solov'eva TF, Ovodov YS (1987) 3-(3-Hydroxy-2,3-dimethyl-5-oxoprolyl)amino-3,6-dideoxy-D-glucose: a novel amino sugar from the antigenic polysaccharide from *Pseudomonas fluorescens*. Bioorg Khim 13:1428–1429
- 288. Knirel YA, Zdorovenko GM, Veremeychenko SN, Shashkov AS, Zakharova IY, Kochetkov NK (1989) Antigenic polysaccharides of bacteria. 36. Structural study of O-specific polysaccharide chain of lipopolysaccharide of *Pseudomonas fluorescens* IMV 2763 (biovar G). Bioorg Khim 15:1538–1545
- Knirel YA, Grosskurth H, Helbig JH, Zähringer U (1995) Structures of decasaccharide and tridecasaccharide tetraphosphates isolated by strong alkaline degradation of O-deacylated lipopolysaccharide of *Pseudomonas fluorescens* strain ATCC 49271. Carbohydr Res 279:215–226
- 290. Knirel YA, Zdorovenko GM, Veremeychenko SN, Lipkind GM, Shashkov AS, Zakharova IY, Kochetkov NK (1988) Antigenic polysaccharides of bacteria. 31. Structure of the O-specific polysaccharide chain of the *Pseudomonas aurantiaca* IMV 31 lipopolysaccharide. Bioorg Khim 14:352–358
- 291. Jiménez-Barbero J, De Castro C, Molinaro A, Nunziata R, Lanzetta R, Parrilli M, Holst O (2002) Structural determination of the O-specific chain of the lipopolysaccharide from *Pseudomonas cichorii*. Eur J Org Chem 1770–1775
- 292. Knirel YA, Shashkov AS, Senchenkova SN, Ajiki Y, Fukuoka S (2002) Structure of the O-polysaccharide of *Pseudomonas putida* FERM P-18867. Carbohydr Res 337:1589–1591
- 293. Molinaro A, Evidente A, Iacobellis NS, Lanzetta R, Cantore PL, Mancino A, Parrilli M (2002) O-specific chain structure from the lipopolysaccharide fraction of *Pseudomonas reactans*: a pathogen of the cultivated mushrooms. Carbohydr Res 337:467–471
- 294. Molinaro A, Bedini E, Ferrara R, Lanzetta R, Parrilli M, Evidente A, Lo CP, Iacobellis NS (2003) Structural determination of the O-specific chain of the lipopolysaccharide from the mushrooms pathogenic bacterium *Pseudomonas tolaasii*. Carbohydr Res 338:1251–1257
- 295. Leone S, Izzo V, Lanzetta R, Molinaro A, Parrilli M, Di Donato A (2005) The structure of the O-polysaccharide from *Pseudomonas stutzeri* OX1 containing two different 4-acylamido-4,6-dideoxy-residues, tomosamine and perosamine. Carbohydr Res 340:651–656
- 296. Leone S, Lanzetta R, Scognamiglio R, Alfieri F, Izzo V, Di Donato A, Parrilli M, Holst O, Molinaro A (2008) The structure of the O-specific polysaccharide from the lipopolysaccharide of *Pseudomonas* sp. OX1 cultivated in the presence of the azo dye Orange II. Carbohydr Res 343:674–684
- 297. Vinogradov EV, Pantophlet R, Haseley SR, Brade L, Holst O, Brade H (1997) Structural and serological characterisation of the O-specific polysaccharide from lipopolysaccharide of *Acinetobacter calcoaceticus* strain 7 (DNA group 1). Eur J Biochem 243:167–173
- 298. Galbraith L, Sharples JL, Wilkinson SG (1999) Structure of the O-specific polysaccharide for *Acinetobacter baumannii* serogroup O1. Carbohydr Res 319:204–208
- 299. Haseley SR, Wilkinson SG (1995) Structural studies of the putative O-specific polysaccharide of Acinetobacter baumannii O2 containing 3,6-dideoxy-3-N-(D-3-hydroxybutyryl) amino-D-galactose. Eur J Biochem 233:899–906
- 300. Haseley SR, Wilkinson SG (1996) Structure of the O-specific polysaccharide of Acinetobacter baumannii O5 containing 2-acetamido-2-deoxy-D-galacturonic acid. Eur J Biochem 237:229–233

- 301. Vinogradov EV, Pantophlet R, Dijkshoorn L, Brade L, Holst O, Brade H (1996) Structural and serological characterisation of two O-specific polysaccharides of *Acinetobacter*. Eur J Biochem 239:602–610
- 302. Haseley SR, Wilkinson SG (1998) Structure of the O-7 antigen from Acinetobacter baumannii. Carbohydr Res 306:257–263
- Haseley SR, Wilkinson SG (1994) Structure of the putative O10 antigen from Acinetobacter baumannii. Carbohydr Res 264:73–81
- Haseley SR, Wilkinson SG (1996) Structural studies of the putative O-specific polysaccharide of Acinetobacter baumannii O11. Eur J Biochem 237:266–271
- Haseley SR, Diggle HJ, Wilkinson SG (1996) Structure of a surface polysaccharide from Acinetobacter baumannii O16. Carbohydr Res 293:259–265
- 306. Haseley SR, Traub WH, Wilkinson SG (1997) Structures of polymeric products isolated from the lipopolysaccharides of reference strains for *Acinetobacter baumannii* O23 and O12. Eur J Biochem 244:147–154
- 307. Haseley S, Wilkinson SG (1997) Structure of the O18 antigen from Acinetobacter baumannii. Carbohydr Res 301:187–192
- Haseley SR, Galbraith L, Wilkinson SG (1994) Structure of a surface polysaccharide from Acinetobacter baumannii strain 214. Carbohydr Res 258:199–206
- Haseley SR, Wilkinson SG (1997) Structural studies of the putative O-specific polysaccharide of Acinetobacter baumannii O24 containing 5,7-diamino-3,5,7,9-tetradeoxy-L-glycero-D-galacto-nonulosonic acid. Eur J Biochem 250:617–623
- MacLean LL, Perry MB, Chen W, Vinogradov E (2009) The structure of the polysaccharide O-chain of the LPS from *Acinetobacter baumannii* strain ATCC 17961. Carbohydr Res 344:474–478
- 311. Haseley SR, Holst O, Brade H (1998) Structural studies of the O-antigen isolated from the phenol- soluble lipopolysaccharide of *Acinetobacter baumannii* (DNA group 2) strain 9. Eur J Biochem 251:189–194
- 312. Vinogradov EV, Brade L, Brade H, Holst O (2003) Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from *Acinetobacter baumannii* strain 24. Carbohydr Res 338:2751–2756
- Vinogradov EV, Brade L, Brade H, Holst O (2005) The structure of the O-specific polysaccharide of the lipopolysaccharide from *Acinetobacter* strain 44 (DNA group 3). Pol J Chem 79:267–273
- 314. Haseley SR, Holst O, Brade H (1997) Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from *Acinetobacter haemolyticus* strain ATCC 17906. Eur J Biochem 244:761–766
- 315. Pantophlet R, Haseley SR, Vinogradov EV, Brade L, Holst O, Brade H (1999) Chemical and antigenic structure of the O-polysaccharide of the lipopolysaccharides from two *Acinetobacter haemolyticus* strains differing only in the anomeric configuration of one glycosyl residue in their O-antigens. Eur J Biochem 263:587–595
- 316. Haseley SR, Pantophlet R, Brade L, Holst O, Brade H (1997) Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from *Acinetobacter junii* strain 65. Eur J Biochem 245:477–481
- 317. Arbatsky NP, Kondakova AN, Shashkov AS, Drutskaya MS, Belousov PV, Nedospasov SA, Petrova MA, Knirel YA (2010) Structure of the O-antigen of *Acinetobacter lwoffii* EK30A; identification of D-homoserine, a novel non-sugar component of bacterial polysaccharides. Org Biomol Chem 8:3571–3577
- 318. Arbatsky NP, Kondakova AN, Shashkov AS, Drutskaya MS, Belousov PV, Nedospasov SA, Petrova MA, Knirel YA (2010) Structure of the O-polysaccharide of *Acinetobacter* sp. VS-15 and *Acinetobacter lwoffii* EK67. Carbohydr Res 345:2287–2290
- Haseley SR, Holst O, Brade H (1997) Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from *Acinetobacter* strain 90 belonging to DNA group 10. Eur J Biochem 245:470–476

- 320. Haseley SR, Holst O, Brade H (1997) Structural studies of the O-antigenic polysaccharide of the lipopolysaccharide from *Acinetobacter* (DNA group 11) strain 94 containing 3-amino-3,6-dideoxy-D-galactose substituted by the previously unknown amide-linked L-2-acetoxypropionic acid or L-2-hydroxypropionic acid. Eur J Biochem 247:815–819
- 321. Vinogradov EV, Pantophlet R, Brade H, Holst O (2001) Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from *Acinetobacter* strain 96 (DNA group 11). J Endotoxin Res 7:113–118
- 322. Chatterjee SN, Chaudhuri K (2003) Lipopolysaccharides of *Vibrio cholerae*. I. Physical and chemical characterization. Biochim Biophys Acta 1639:65–79
- 323. Kenne L, Lindberg B, Schweda E, Gustafsson B, Holme T (1988) Structural studies of the O-antigen from Vibrio cholerae O:2. Carbohydr Res 180:285–294
- 324. Chowdhury TA, Jansson P-E, Lindberg B, Gustavsson B, Holme T (1991) Structural studies of the *Vibrio cholerae* O:3 O-antigen polysaccharide. Carbohydr Res 215:303–314
- 325. Hermansson K, Jansson P-E, Holme T, Gustavsson B (1993) Structural studies of the Vibrio cholerae O:5 O-antigen polysaccharide. Carbohydr Res 248:199–211
- 326. Bergstrum N, Nair GB, Weintraub A, Jansson P-E (2002) Structure of the O-polysaccharide from the lipopolysaccharide from *Vibrio cholerae* O6. Carbohydr Res 337:813–817
- 327. Kocharova NA, Perepelov AV, Zatonsky GV, Shashkov AS, Knirel YA, Jansson P-E, Weintraub A (2001) Structural studies of the O-specific polysaccharide of *Vibrio cholerae* O8 using solvolysis with triflic acid. Carbohydr Res 330:83–92
- 328. Kocharova NA, Knirel YA, Jansson P-E, Weintraub A (2001) Structure of the O-specific polysaccharide of *Vibrio cholerae* O9 containing 2-acetamido-2-deoxy-D-galacturonic acid. Carbohydr Res 332:279–284
- 329. Ansari AA, Kenne L, Lindberg B, Gustafsson B, Holme T (1986) Structural studies of the O-antigen from *Vibrio cholerae* O:21. Carbohydr Res 150:213–219
- 330. Perepelov AV, Kocharova NA, Knirel YA, Jansson P-E, Weintraub A (2011) Structure of the O-polysaccharide of *Vibrio cholerae* O43 containing a new monosaccharide derivative, 4-(*N*-acetyl-L-allothreonyl)amino-4,6-dideoxy-D-glucose. Carbohydr Res 346:70–96
- 331. Kondo S, Sano Y, Isshiki Y, Hisatsune K (1996) The O polysaccharide chain of the lipopolysaccharide from *Vibrio cholerae* O76 is a homopolymer of *N*-[(*S*)-(+)-2-hydroxypropionyl]-α-L-perosamine. Microbiology 142:2879–2885
- 332. Haishima Y, Kondo S, Hisatsune K (1990) The occurrence of $\alpha(1 \rightarrow 2)$ linked *N*-acetylperosamine-homopolymer in lipopolysaccharides of non-O1 *Vibrio cholerae* possessing an antigenic factor in common with O1 *V. cholerae*. Microbiol Immunol 34: 1049–1054
- 333. Sano Y, Kondo S, Isshiki Y, Shimada T, Hisatsune K (1996) An N-[(R)-(-)-2hydroxypropionyl]-α-L-perosamine homopolymer constitutes the O polysaccharide chain of the lipopolysaccharide from Vibrio cholerae O144 which has antigenic factor(s) in common with V. cholerae O76. Microbiol Immunol 40:735–741
- 334. Senchenkova SN, Zatonsky GV, Shashkov AS, Knirel YA, Jansson P-E, Weintraub A, Albert MJ (1998) Structure of the O-antigen of *Vibrio cholerae* O155 that shares a putative D-galactose-4,6-cyclophosphate-associated epitope with V. cholerae O139 Bengal. Eur J Biochem 254:58–62
- 335. Vinogradov EV, Holst O, Thomas-Oates JE, Broady KW, Brade H (1992) The structure of the O-antigenic polysaccharide from lipopolysaccharide of *Vibrio cholerae* strain H11 (non-O1). Eur J Biochem 210:491–498
- 336. Isshiki Y, Kondo S, Haishima Y, Iguchi T, Hisatsune K (1996) Identification of N-3-hydroxypropionyl-2-O-methyl-D-perosamine as a specific constituent of the lipopolysaccharide from Vibrio bio-serogroup 1875 which has Ogawa antigen factor B of Vibrio cholerae O1. J Endotoxin Res 3:143–149
- 337. Nazarenko EL, Shashkov AS, Knirel YA, Ivanova EP, Ovodov YS (1990) Uncommon acidic monosaccharides as components of O-specific polysaccharides of *Vibrio*. Bioorg Khim 16:1426–1429

- 338. Nazarenko EL, Zubkov VA, Ivanova EP, Gorshkova RP (1992) Structure of the O-specific polysaccharide of *Vibrio fluvialis* serovar 3. Bioorg Khim 18:418–421
- Nazarenko EL, Gorshkova RP, Ovodov YS, Shashkov AS, Knirel YA (1989) Structure of the repeating unit of O-specific polysaccharide chain of *Vibrio fluvialis* lipopolysaccharide. Bioorg Khim 15:1100–1106
- 340. Nazarenko EL, Zubkov VA, Shashkov AS, Knirel YA, Komandrova NA, Gorshkova RP, Ovodov YS (1993) Structure of the repeating unit of the O-specific polysaccharide from Vibrio fluvialis. Bioorg Khim 19:989–1000
- 341. Kenne L, Lindberg B, Rahman MM, Mosihuzzaman M (1993) Structural studies of *Vibrio fluvialis* M-940 O-antigen polysaccharide. Carbohydr Res 242:181–189
- 342. Kondo S, Haishima Y, Ishida K, Isshiki Y, Hisatsune K (2000) The O-polysaccharide of lipopolysaccharide isolated from *Vibrio fluvialis* O19 is identical to that of *Vibrio* bioserogroup 1875 variant. Microbiol Immunol 44:941–944
- 343. Kondo S, Ishida K, Isshiki Y, Haishima Y, Iguchi T, Hisatsune K (1993) N-3-Hydroxypropionyl-α-D-perosamine homopolymer constituting the O-chain of lipopolysaccharides from Vibrio bioserogroup 1875 possessing antigenic factor(s) in common with O1 Vibrio cholerae. Biochem J 292:531–535
- 344. Kenne L, Lindberg B, Rahman MM, Mosihuzzaman M (1990) Structural studies of the O-antigen polysaccharide of *Vibrio fluvialis* AA-18239. Carbohydr Res 205:440–443
- 345. Landersjij C, Weintraub A, Ansaruzzaman M, Albert MJ, Widmalm G (1998) Structural analysis of the O-antigenic polysaccharide from *Vibrio mimicus* N-1990. Eur J Biochem 251:986–990
- 346. Kenne L, Lindberg B, Rahman MM, Mosihuzzman M (1993) Structural studies of the Vibrio mimicus W-26768 O-antigen polysaccharide. Carbohydr Res 243:131–138
- 347. Sadovskaya I, Brisson JR, Khieu NH, Mutharia LM, Altman E (1998) Structural characterization of the lipopolysaccharide O-antigen and capsular polysaccharide of *Vibrio ordalii* serotype O:2. Eur J Biochem 253:319–327
- 348. Kilcoyne M, Shashkov AS, Knirel YA, Gorshkova RP, Nazarenko EL, Ivanova EP, Gorshkova NM, Senchenkova SN, Savage AV (2005) The structure of the O-polysaccharide of the *Pseudoalteromonas rubra* ATCC 29570^T lipopolysaccharide containing a keto sugar. Carbohydr Res 340:2369–2375
- 349. Knirel YA, Senchenkova SN, Shashkov AS, Esteve C, Alcaide E, Merino S, Tomas JM (2009) Structure of a polysaccharide from the lipopolysaccharide of *Vibrio vulnificus* CECT4602 containing 2-acetamido-2,3,6-trideoxy-3-[(*S*)- and (*R*)-3-hydroxybuta-noylamino]-L-mannose. Carbohydr Res 344:479–483
- 350. Senchenkova SN, Shashkov AS, Knirel YA, Esteve C, Alcaide E, Merino S, Tomas JM (2009) Structure of a polysaccharide from the lipopolysaccharide of *Vibrio vulnificus* clinical isolate YJ016 containing 2-acetimidoylamino-2-deoxy-L-galacturonic acid. Carbohydr Res 344:1009–1013
- 351. Sadovskaya I, Brisson J-R, Altman E, Mutharia LM (1996) Structural studies of the lipopolysaccharide O-antigen and capsular polysaccharide of *Vibrio anguillarum* serotype O:2. Carbohydr Res 283:111–127
- 352. Wang Z, Vinogradov E, Li J, Lund V, Altman E (2009) Structural characterization of the lipopolysaccharide O-antigen from atypical isolate of *Vibrio anguillarum* strain 1282. Carbohydr Res 344:1371–1375
- 353. Eguchi H, Kaya S, Araki Y, Kojima N, Yokota S (1992) Structure of the O-polysaccharide chain of the lipopolysaccharide of Vibrio anguillarum V-123. Carbohydr Res 231:159–169
- 354. Banoub JH, Michon F, Hodder HJ (1987) Structural elucidation of the O-specific polysaccharide of the phenol-phase soluble lipopolysaccharide of *Vibrio anguillarum*. Biochem Cell Biol 65:19–26
- 355. Molinaro A, Silipo A, Lanzetta R, Newman M-A, Dow JM, Parrilli M (2003) Structural elucidation of the O-chain of the lipopolysaccharide from *Xanthomonas campestris* strain 8004. Carbohydr Res 338:277–281
- 356. Senchenkova SN, Huang X, Laux P, Knirel YA, Shashkov AS, Rudolph K (2002) Structures of the O-polysaccharide chains of the lipopolysaccharides of *Xanthomonas campestris* pv.

phaseoli var. fuscans GSPB 271 and Xanthomonas campestris pv. malvacearum GSPB 1386 and GSPB 2388. Carbohydr Res 337:1723–1728

- 357. Molinaro A, Evidente A, Lo Cantore P, Iacobellis NS, Bedini E, Lanzetta R, Parrilli M (2003) Structural determination of a novel O-chain polysaccharide of the lipopolysaccharide from the bacterium *Xanthomonas campestris* pv. *pruni*. Eur J Org Chem 2254–2259
- 358. Wilkinson SG, Galbraith L, Anderton WJ (1983) Lipopolysaccharides from *Pseudomonas maltophilia*: Composition of the lipopolysaccharide and structure of the side-chain polysaccharide from strain N.C.I.B. 9204. Carbohydr Res 112:241–252
- 359. Winn AM, Wilkinson SG (1997) Structure of the O2 antigen of *Stenotrophomonas* (*Xanthomonas* or *Pseudomonas*) maltophilia. Carbohydr Res 298:213–217
- 360. Winn AM, Miles CT, Wilkinson SG (1996) Structure of the O3 antigen of *Stenotrophomonas* (*Xanthomonas* or *Pseudomonas*) maltophilia. Carbohydr Res 282:149–156
- 361. Winn AM, Wilkinson SG (2001) Structures of the O4 and O18 antigens of *Stenotro-phomonas maltophilia*: a case of enantiomeric repeating units. Carbohydr Res 330:215–221
- 362. Winn AM, Wilkinson SG (1995) Structure of the O6 antigen of *Stenotrophomonas* (*Xanthomonas* or *Pseudomonas*) maltophilia. Carbohydr Res 272:225–230
- 363. Winn AM, Wilkinson SG (1998) The O7 antigen of *Stenotrophomonas maltophilia* is a linear D-rhamnan with a trisaccharide repeating unit that is also present in polymers from some *Pseudomonas* and *Burkholderia* species. FEMS Microbiol Lett 166:57–61
- 364. Neal DJ, Wilkinson SG (1982) Lipopolysaccharides from *Pseudomonas maltophilia*: Structural studies of the side-chain, core, and lipid A regions of the lipopolysaccharide from strain NCTC 10257. Eur J Biochem 128:143–149
- 365. Winn AM, Miller AM, Wilkinson SG (1995) Structure of the O10 antigen of Stenotrophomonas (Xanthomonas) maltophilia. Carbohydr Res 267:127–133
- 366. Di Fabio JL, Perry MB, Bundle DR (1987) Analysis of the lipopolysaccharide of *Pseudo-monas maltophilia* 555. Biochem Cell Biol 65:968–977
- Winn AM, Wilkinson SG (2001) Structure of the O16 antigen of *Stenotrophomonas* maltophilia. Carbohydr Res 330:279–283
- Winn AM, Galbraith L, Temple GS, Wilkinson SG (1993) Structure of the O19 antigen of Xanthomonas maltophilia. Carbohydr Res 247:249–254
- 369. Winn AM, Wilkinson SG (1996) Structure of the O20 antigen of *Stenotrophomonas* (*Xanthomonas* or *Pseudomonas*) maltophilia. Carbohydr Res 294:109–115
- Galbraith L, Wilkinson SG (2000) Structures of the O21 and O25 antigens of *Stenotro-phomonas maltophilia*. Carbohydr Res 323:98–102
- 371. Gunn JS, Ernst RK (2007) The structure and function of *Francisella* lipopolysaccharide. Ann NY Acad Sci 1105:202–218
- 372. Kay W, Petersen BO, Duus J, Perry MB, Vinogradov E (2006) Characterization of the lipopolysaccharide and β -glucan of the fish pathogen *Francisella victoria*. FEBS J 273:3002–3013
- 373. Knirel YA, Senchenkova SN, Kocharova NA, Shashkov AS, Helbig JH, Zähringer U (2001) Identification of a homopolymer of 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-D-glycero-D-talo-nonulosonic acid in the lipopolysaccharides of Legionella pneumophila non-1 serogroups. Biochemistry (Moscow) 66:1035–1041
- 374. Pieretti G, Corsaro MM, Lanzetta R, Parrilli M, Nicolaus B, Gambacorta A, Lindner B, Holst O (2008) Structural characterization of the core region of the lipopolysaccharide from the haloalkaliphilic *Halomonas pantelleriensis*: identification of the biological O-antigen repeating unit. Eur J Org Chem 721–728
- 375. Pieretti G, Nicolaus B, Poli A, Corsaro MM, Lanzetta R, Parrilli M (2009) Structural determination of the O-chain polysaccharide from the haloalkaliphilic *Halomonas alkalian-tarctica* bacterium strain CRSS. Carbohydr Res 344:2051–2055
- 376. De Castro C, Molinaro A, Nunziata R, Grant W, Wallace A, Parrilli M (2003) The O-specific chain structure of the major component from the lipopolysaccharide fraction of *Halomonas magadii* strain 21 MI (NCIMB 13595). Carbohydr Res 338:567–570

- 377. De Castro C, Molinaro A, Wallace A, Grant WD, Parrilli M (2003) Structural determination of the O-specific chain of the lipopolysaccharide fraction from the alkaliphilic bacterium *Halomonas magadii* strain 21 MI. Eur J Org Chem 1029–1034
- 378. Pieretti G, Carillo S, Kim KK, Lee KC, Lee J-S, Lanzetta R, Parrilli M, Corsaro MM (2011) O-chain structure from the lipopolysaccharide of the human pathogen *Halomonas stevensii* strain S18214. Carbohydr Res 346:362–365
- 379. Zubkov VA, Nazarenko EL, Ivanova EP, Gorshkova NM, Gorshkova RP (1999) Structure of the repeating unit of the O-specific polysaccharide of *Marinomonas communis* strain ATCC 27118^T. Bioorg Khim 25:290–292
- 380. Vinogradov EV, Campos-Portuguez S, Yokota A, Mayer H (1994) The structure of the O-specific polysaccharide from *Thiobacillus ferrooxidans* IFO 14262. Carbohydr Res 261:103–109
- Ormeno-Orrillo E (2005) Lipopolysaccharides of rhizobiaceae: structure and biosynthesis. Rev Latinoam Microbiol 47:165–175
- 382. De Castro C, Molinaro A, Lanzetta R, Silipo A, Parrilli M (2008) Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species. Carbohydr Res 343:1924–1933
- 383. D'Haeze W, Leoff C, Freshour G, Noel KD, Carlson RW (2007) *Rhizobium etli* CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. J Biol Chem 282:17101–17113
- 384. Forsberg LS, Bhat UR, Carlson RW (2000) Structural characterization of the O-antigenic polysaccharide of the lipopolysaccharide from *Rhizobium etli* strain CE3. A unique O-acetylated glycan of discrete size, containing 3-O-methyl-6-deoxy-L-talose and 2,3,4-tri-O-methyl-L-fucose. J Biol Chem 275:18851–18863
- 385. Turska-Szewczuk A, Pietras H, Borucki W, Russa R (2008) Alteration of O-specific polysaccharide structure of symbiotically defective *Mesorhizobium loti* mutant 2213.1 derived from strain NZP2213. Acta Biochim Pol 55:191–199
- 386. Turska-Szewczuk A, Palusinska-Szysz M, Russa R (2008) Structural studies of the O-polysaccharide chain from the lipopolysaccharide of symbiotically enhanced mutant Mlo-13 of *Mesorhizobium loti* NZP2213. Carbohydr Res 343:477–482
- 387. Forsberg LS, Carlson RW (2008) Structural characterization of the primary O-antigenic polysaccharide of the *Rhizobium leguminosarum* 3841 lipopolysaccharide and identification of a new 3-acetimidoylamino-3-deoxyhexuronic acid glycosyl component: a unique O-methylated glycan of uniform size, containing 6-deoxy-3-O-methyl-D-talose, N-acetylquinovosamine, and rhizoaminuronic acid (3-acetimidoylamino-3-deoxy-D-gluco-hexuronic acid). J Biol Chem 283:16037–16050
- Muszynski A, Laus M, Kijne JW, Carlson RW (2011) The structures of the lipopolysaccharides from *Rhizobium leguminosarum* RBL5523 and its UDP-glucose dehydrogenase mutant (*exo5*). Glycobiology 21:55–68
- 389. Russa R, Urbanik-Sypniewska T, Shashkov AS, Banaszek A, Zamojski A, Mayer H (1996) Partial structure of lipopolysaccharides isolated from *Rhizobium leguminosarum* bv. *trifolii* 24 and its GalA-negative exo⁻ mutant AR20. Syst Appl Microbiol 19:1–8
- 390. Banaszek A (1998) Synthesis of the unique trisaccharide repeating unit, isolated from lipopolysaccharides *Rhizobium leguminosarum bv trifolii* 24, and its analogs. Carbohydr Res 306:379–385
- 391. Zdorovenko EL, Valueva OA, Kachala VV, Shashkov AS, Kocharova NA, Knirel YA, Kutkowska J, Turska-Szewczuk A, Urbanik-Sypniewska T, Choma A, Russa R (2009) Structure of the O-polysaccharides of the lipopolysaccharides of *Mesorhizobium loti* HAMBI 1148 and *Mesorhizobium amorphae* ATCC 19655 containing two methylated monosaccharides. Carbohydr Res 344:2519–2527
- 392. Russa R, Urbanik-Sypniewska T, Shashkov AS, Kochanowski H, Mayer H (1995) The structure of the homopolymeric O-specific chain from the phenol soluble LPS of the *Rhizobium loti* type strain NZP2213. Carbohydr Polym 27:299–303

- 393. Fernandez de Cordoba FJ, Rodriguez-Carvajal MA, Tejero-Mateo P, Corzo J, Gil-Serrano AM (2008) Structure of the O-antigen of the main lipopolysaccharide isolated from *Sinorhizobium fredii* SMH12. Biomacromolecules 9:678–685
- 394. Reuhs BL, Relic B, Forsberg LS, Marie C, Ojanen-Reuhs T, Stephens SB, Wong CH, Jabbouri S, Broughton WJ (2005) Structural characterization of a flavonoid-inducible *Pseudomonas aeruginosa* A-band-like O antigen of *Rhizobium* sp. strain NGR234, required for the formation of nitrogen-fixing nodules. J Bacteriol 187:6479–6487
- 395. Valueva OA, Zdorovenko EL, Kachala VV, Shashkov AS, Knirel YA, Komaniecka I, Choma A (2010) Structural investigation of the O-polysaccharide of *Azorhizobium caulinodans* HAMBI 216 consisting of rhamnose, 2-O-methylrhamnose and 3-C-methylrhamnose. In: Abstracts of the 4th Baltic meeting on microbial carbohydrates, Hyytiälä, Finland. 19–22 September 2010
- 396. Velasco J, Moll H, Vinogradov EV, Moriyyn I, Zähringer U (1996) Determination of the O-specific polysaccharide structure in the lipopolysaccharide of *Ochrobactrum anthropi* LMG 3331. Carbohydr Res 287:123–126
- 397. Shashkov AS, Campos-Portuguez S, Kochanowski H, Yokota A, Mayer H (1995) The structure of the O-specific polysaccharide from *Thiobacillus* sp. IFO 14570, with three different diaminopyranoses forming the repeating unit. Carbohydr Res 269:157–166
- 398. Previato JO, Jones C, Stephan MP, Almeida LPA, Mendonça-Previato L (1997) Structure of the repeating oligosaccharide from the lipopolysaccharide of the nitrogen-fixing bacterium *Acetobacter diazotrophicus* strain PAL 5. Carbohydr Res 298:311–318
- 399. Choma A, Komaniecka I, Sowinski P (2009) Revised structure of the repeating unit of the O-specific polysaccharide from *Azospirillum lipoferum* strain SpBr17. Carbohydr Res 344:936–939
- 400. Boiko AS, Smol'kina ON, Fedonenko YP, Zdorovenko EL, Kachala VV, Konnova SA, Ignatov VV (2010) O-Polysaccharide structure in serogroup I azospirilla. Microbiology 79:197–205
- 401. Fedonenko YP, Katsy EI, Petrova LP, Boyko AS, Zdorovenko EL, Kachala VV, Shashkov AS, Knirel YA (2010) The structure of the O-specific polysaccharide from a mutant of nitrogen-fixing rhizobacterium *Azospirillum brasilense* Sp245 with an altered plasmid content. Bioorg Khim 36:219–223
- 402. Wilkinson SG (1981) Structural studies of an acetylated mannan from *Pseudomonas* diminuta N.C.T.C. 8545. Carbohydr Res 93:269–278
- 403. Knirel YA, Paramonov NA, Shashkov AS, Kochetkov NK, Yarullin RG, Farber SM, Efremenko VI (1992) Structure of the polysaccharide chains of *Pseudomonas pseudomallei* lipopolysaccharides. Carbohydr Res 233:185–193
- 404. Perry MB, MacLean LL, Schollaardt T, Bryan LE, Ho M (1995) Structural characterization of the lipopolysaccharide O antigens of *Burkholderia pseudomallei*. Infect Immun 63:3348–3352
- 405. Brett PJ, Burtnick MN, Woods DE (2003) The wbiA locus is required for the 2-O-acetylation of lipopolysaccharides expressed by *Burkholderia pseudomallei* and *Burkholderia thailandensis*. FEMS Microbiol Lett 218:323–328
- 406. Burtnick MN, Brett PJ, Woods DE (2002) Molecular and physical characterization of Burkholderia mallei O antigens. J Bacteriol 184:849–852
- 407. Soldatkina MA, Knirel YA, Tanatar NV, Zakharova IY (1989) Immunological and structural studies of *Pseudomonas cepacia* lipopolysaccharide. Mikrobiol Zh 51:32–38
- Vinion-Dubiel AD, Goldberg JB (2003) Lipopolysaccharide of *Burkholderia cepacia* complex. J Endotoxin Res 9:201–213
- 409. Ortega X, Hunt TA, Loutet S, Vinion-Dubiel AD, Datta A, Choudhury B, Goldberg JB, Carlson R, Valvano MA (2005) Reconstitution of O-specific lipopolysaccharide expression in *Burkholderia cenocepacia* strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol 187:1324–1333
- 410. Cérantola S, Montrozier H (1997) Structural elucidation of two polysaccharides present in the lipopolysaccharide of a clinical isolate of *Burkholderia cepacia*. Eur J Biochem 246:360–366
- 411. Ierano T, Silipo A, Cescutti P, Leone MR, Rizzo R, Lanzetta R, Parrilli M, Molinaro A (2009) Structural study and conformational behavior of the two different lipopolysaccharide O-antigens produced by the cystic fibrosis pathogen *Burkholderia multivorans*. Chem Eur J 15:7156–7166
- 412. Gaur D, Galbraith L, Wilkinson SG (1998) Structural characterisation of a rhamnan and a fucorhamnan, both present in the lipopolysaccharide of *Burkholderia vietnamiensis* strain LMG 10926. Eur J Biochem 258:696–701
- 413. Carillo S, Silipo A, Perino V, Lanzetta R, Parrilli M, Molinaro A (2009) The structure of the O-specific polysaccharide from the lipopolysaccharide of *Burkholderia anthina*. Carbohydr Res 344:1697–1700
- 414. Karapetyan G, Kaczynski Z, Iacobellis NS, Evidente A, Holst O (2006) The structure of the O-specific polysaccharide of the lipopolysaccharide from *Burkholderia gladioli* pv. *agaricicola*. Carbohydr Res 341:930–934
- 415. Mattos KA, Todeschini AR, Heise N, Jones C, Previato JO, Mendonca-Previato L (2005) Nitrogen-fixing bacterium *Burkholderia brasiliensis* produces a novel yersiniose A-containing O-polysaccharide. Glycobiology 15:313–321
- 416. De Castro C, Molinaro A, Lanzetta R, Holst O, Parrilli M (2005) The linkage between O-specific caryan and core region in the lipopolysaccharide of *Burkholderia caryophylli* is furnished by a primer monosaccharide. Carbohydr Res 340:1802–1807
- 417. Kocharova NA, Knirel YA, Shashkov AS, Nifant'ev NE, Kochetkov NK, Varbanets LD, Moskalenko NV, Brovarskaya OS, Muras VA, Young JM (1993) Studies of O-specific polysaccharide chains of *Pseudomonas solanacearum* lipopolysaccharides consisting of structurally different repeating units. Carbohydr Res 250:275–287
- Galbraith L, George R, Wyklicky J, Wilkinson SG (1996) Structure of the O-specific polysaccharide from *Burkholderia pickettii* strain NCTC 11149. Carbohydr Res 282:263–269
- Vinogradov E, Nossova L, Swierzko A, Cedzynski M (2004) The structure of the O-specific polysaccharide from *Ralstonia pickettii*. Carbohydr Res 339:2045–2047
- 420. Larocque S, Brisson JR, Therisod H, Perry MB, Caroff M (2003) Structural characterization of the O-chain polysaccharide isolated from *Bordetella avium* ATCC 5086: variation on a theme. FEBS Lett 535:11–16
- 421. Preston A, Petersen BO, Duus JO, Kubler-Kielb J, Ben Menachem G, Li J, Vinogradov E (2006) Complete structure of *Bordetella bronchiseptica* and *Bordetella parapertussis* lipopolysaccharides. J Biol Chem 281:18135–18144
- 422. Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A (2010) Antigenic variation among *Bordetella: Bordetella bronchiseptica* strain MO149 expresses a novel O chain that is poorly immunogenic. J Biol Chem 285:26869–26877
- 423. Vinogradov E (2002) Structure of the O-specific polysaccharide chain of the lipopolysaccharide of *Bordetella hinzii*. Carbohydr Res 337:961–963
- 424. Vinogradov E, Caroff M (2005) Structure of the *Bordetella trematum* LPS O-chain subunit. FEBS Lett 579:18–24
- 425. Allen A, Maskell D (1996) The identification, cloning and mutagenesis of a genetic locus required for lipopolysaccharide biosynthesis in *Bordetella pertussis*. Mol Microbiol 19:37–52
- 426. Vinogradov E, MacLean LL, Brooks BW, Lutze-Wallace C, Perry MB (2008) The structure of the polysaccharide of the lipopolysaccharide produced by *Taylorella equigenitalis* type strain (ATCC 35865). Carbohydr Res 343:3079–3084
- 427. Vinogradov E, MacLean LL, Brooks BW, Lutze-Wallace C, Perry MB (2008) Structure of the O-polysaccharide of the lipopolysaccharide produced by *Taylorella asinigenitalis* type strain (ATCC 700933). Biochem Cell Biol 86:278–284
- 428. Knirel YA, Zdorovenko GM, Shashkov AS, Zakharova IY, Kochetkov NK (1986) Antigenic polysaccharides of bacteria. 19. Structure of O-specific polysaccharide chain of *Alcaligenes faecalis* lipopolysaccharide. Bioorg Khim 12:1530–1539

- 429. Silipo A, Molinaro A, Jiang CL, Jiang Y, Xu P, Xu LH, Lanzetta R, Parrilli M (2007) The O-chain structure from the LPS of the bacterium *Naxibacter alkalitolerans* YIM 31775 T. Carbohydr Res 342:757–761
- 431. Vinogradov EV, Brade H, Holst O (1994) The structure of the O-specific polysaccharide of the lipopolysaccharide from *Chromobacterium violaceum* NCTC 9694. Carbohydr Res 264:313–317
- 432. Karlyshev AV, Champion OL, Churcher C, Brisson JR, Jarrell HC, Gilbert M, Brochu D, St Michael F, Li J, Wakarchuk WW, Goodhead I, Sanders M, Stevens K, White B, Parkhill J, Wren BW, Szymanski CM (2005) Analysis of *Campylobacter jejuni* capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol Microbiol 55:90–103
- 433. Kilcoyne M, Moran AP, Shashkov AS, Senchenkova SN, Ferris JA, Corcoran AT, Savage AV (2006) Molecular origin of two polysaccharides of *Campylobacter jejuni* 81116. FEMS Microbiol Lett 263:214–222
- 434. Senchenkova SN, Shashkov AS, Knirel YA, McGovern JJ, Moran AP (1997) The O-specific polysaccharide chain of *Campylobacter fetus* serotype A lipopolysaccharide is a partially O-acetylated 1,3-linked α-D-mannan. Eur J Biochem 245:637–641
- 435. Senchenkova SN, Knirel YA, Shashkov AS, McGovern JJ, Moran AP (1996) The O-specific polysaccharide chain of *Campylobacter fetus* serotype B lipopolysaccharide is a linear D-rhamnan terminated with 3-O-methyl-D-rhamnose (D-acofriose). Eur J Biochem 239:434–438
- 436. Monteiro MA (2001) *Helicobacter pylori*: a wolf in sheep's clothing: the glycotype families of *Helicobacter pylori* lipopolysaccharides expressing histo-blood groups: structure, biosynthesis, and role in pathogenesis. Adv Carbohydr Chem Biochem 57:99–158
- 437. Moran AP (2008) Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen *Helicobacter pylori*. Carbohydr Res 343:1952–1965
- 438. Moran AP, Knirel YA, Senchenkova SN, Widmalm G, Hynes SO, Jansson P-E (2002) Phenotypic variation in molecular mimicry between *Helicobacter pylori* lipopolysaccharides and human gastric epithelial cell surface glycoforms. Acid-induced phase variation in Lewisx and Lewisy expression by *H. pylori* lipopolysaccharides. J Biol Chem 277: 5785–5795
- 439. Kocharova NA, Knirel YA, Widmalm G, Jansson P-E, Moran AP (2000) Structure of an atypical O-antigen polysaccharide of *Helicobacter pylori* containing a novel monosaccharide 3-*C*-methyl-D-mannose. Biochemistry 39:4755–4760
- 440. MacLean LL, Perry MB, Crump EM, Kay WW (2003) Structural characterization of the lipopolysaccharide *O*-polysaccharide antigen produced by *Flavobacterium columnare* ATCC 43622. Eur J Biochem 270:3440–3446
- 441. MacLean LL, Vinogradov E, Crump EM, Perry MB, Kay WW (2001) The structure of the lipopolysaccharide O-antigen produced by *Flavobacterium psychrophilum* (259–93). Eur J Biochem 268:2710–2716
- 442. Vinogradov E, MacLean LL, Crump EM, Perry MB, Kay WW (2003) Structure of the polysaccharide chain of the lipopolysaccharide from *Flexibacter maritimus*. Eur J Biochem 270:1810–1815
- 443. Perepelov AV, Shashkov AS, Tomshich SV, Komandrova NA, Nedashkovskaya OI (2007) A pseudoaminic acid-containing O-specific polysaccharide from a marine bacterium *Cellulophaga fucicola*. Carbohydr Res 342:1378–1381
- 444. Tomshich SV, Komandrova NA, Widmalm G, Nedashkovskaya OI, Shashkov AS, Perepelov AV (2007) Structure of acidic O-specific polysaccharide from the marine bacterium *Cellulophaga baltica*. Bioorg Khim 33:83–87
- 445. Hermansson K, Perry MB, Altman E, Brisson J-R, Garcia MM (1993) Structural studies of the O-antigenic polysaccharide of *Fusobacterium necrophorum*. Eur J Biochem 212:801–809

- 446. Senchenkova SN, Shashkov AS, Moran AP, Helander I, Knirel YA (1995) Structures of the O-specific polysaccharide chains of *Pectinatus cerevisiphilus* and *Pectinatus frisingensis* lipopolysaccharides. Eur J Biochem 232:552–557
- 447. Paramonov N, Bailey D, Rangarajan M, Hashim A, Kelly G, Curtis MA, Hounsell EF (2001) Structural analysis of the polysaccharide from the lipopolysaccharide of *Porphyromonas* gingivalis strain W50. Eur J Biochem 268:4698–4707
- 448. Rangarajan M, Aduse-Opoku J, Paramonov N, Hashim A, Bostanci N, Fraser OP, Tarelli E, Curtis MA (2008) Identification of a second lipopolysaccharide in *Porphyromonas gingivalis* W50. J Bacteriol 190:2920–2932
- Matsuo K, Isogai E, Araki O (2001) Structural characterization of the O-antigenic polysaccharide chain of *Porphyromonas circumdentaria* NCTC 12469. Microbiol Immunol 45:299–306
- 450. Hashimoto M, Kirikae F, Dohi T, Adachi S, Kusumoto S, Suda Y, Fujita T, Naoki H, Kirikae T (2002) Structural study on lipid A and the O-specific polysaccharide of the lipopolysaccharide from a clinical isolate of *Bacteroides vulgatus* from a patient with Crohn's disease. Eur J Biochem 269:3715–3721