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Abstract—Following a report of variations in the lipopolysaccharide (LPS) structure of Yersinia pestis at mammalian (37 �C) and
flea (25 �C) temperatures, a number of changes to the LPS structure were observed when the bacterium was cultivated at a temper-

ature of winter-hibernating rodents (6 �C). In addition to one of the known Y. pestis LPS types, LPS of a new type was isolated from

Y. pestis KM218 grown at 6 �C. The core of the latter differs in: (i) replacement of terminal galactose with terminal DD-glycero-DD-

manno-heptose; (ii) phosphorylation of terminal oct-2-ulosonic acid with phosphoethanolamine; (iii) a lower content of GlcNAc,

and; (iv) the absence of glycine; lipid A differs in the lack of any 4-amino-4-deoxyarabinose and presumably partial (di)oxygenation

of a fatty acid(s). The data obtained suggest that cold temperature switches on an alternative mechanism of control of the synthesis

of Y. pestis LPS.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Yersinia pestis; Lipopolysaccharide; Structure modification; Lipid A; Core oligosaccharide
1. Introduction

The natural environmental temperatures for Y. pestis,

the cause of bubonic and pneumonic plague, may vary

from 0 to 42 �C. Significant variations in the lipopoly-

saccharide (LPS) structure were observed when the
bacteria are cultivated at 25–28 or 37 �C, including alter-
nation of terminal core monosaccharides [DD-glycero-DD-
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manno-heptose (DDDDHep) vs DD-galactose; 3-deoxy-DD-man-

no-oct-2-ulosonic acid (Kdo) vs DD-glycero-DD-talo-octulo-

sonic acid (Ko)]1 and change in the content of 4-amino-

4-deoxy-LL-arabinose (LL-Ara4N) and the degree of

acylation in lipid A.1–3 These variations were accompa-

nied by alteration in the LPS bioactivity suggesting a
role for overcoming the defense systems of both warm-

blooded mammals (host) and cold-blooded insects

(vector). We now studied the LPS structure in a Y. pestis

strain grown at 6 �C (LPS-6) to mimic the conditions in

animals during winter hibernation, and compared it

with those of the LPS from the same strain cultivated

at 25 and 37 �C (LPS-25 and LPS-37, respectively).
2. Results and discussion

LPS-6 was isolated by phenol/chloroform/light petro-
leum extraction from Y. pestis KM218 grown at 6 �C
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in a casein hydrolysate medium. In SDS-PAGE, the

electrophoretic mobility of LPS-6 was practically the
same as that for the previously described LPS-251 (data

not shown).

The electrospray ionization Fourier transform ion-

cyclotron resonance (ESI FTICR) mass spectrum of

LPS-6 (not shown) indicated a mixture of two LPS types

called LPS-6A and LPS-6B. The former was identified

as one of the Ko-containing LPS-25 types with known

structure1 shown in Figure 1. Indeed, as in LPS-25, lipid
A in LPS-6A bears four to six acyl groups and phos-

phate groups are substituted with 4-amino-4-deoxyara-
Figure 1. Structures of hexaacyl LPS-6A (LPS-6Ahexa)
1 and hexaacyl LPS-6

Pentaacyl LPS-6A lacks 16:1 and tetraacyl LPS-6A lacks both 16:1 and 12:

minority of molecules of both LPS-6A and LPS-6B, terminal Ko is replac

substitution with GlcNAc (�50% in LPS-6A or �15% in LPS-6B). Some mole

lipid A of LPS-6B, an O-linked fatty acid(s) is partially (di)oxygenated.
binose (Ara4N) nearly stoichiometrically. The core of

LPS-6A contains only Gal and predominantly Ko as
terminal core monosaccharides, which is in agreement

with our previous finding that DDDDHep and Kdo are pref-

erentially incorporated into the core at 37 �C, whereas
Gal and Ko are incorporated at lower temperatures.1

In contrast, LPS-6B was significantly different from

the known Y. pestis LPS types.1 For the structural eluci-

dation, LPS-6 was purified using the Bligh & Dyer pro-

cedure,4 and LPS-6B was recovered from the
chloroform/methanol/water extract. As from the ESI

FTICR MS data, the LPS-6B preparation was
B (LPS-6Bhexa) (this work) from Y. pestis KM218 cultivated at 6 �C.
0; tetraacyl LPS-6B lacks 16:1 and one of the 3-HO14:0 groups. In a

ed with terminal Kdo. The dotted line indicates a non-stoichiometric

cules of LPS-6A contain glycine at an unknown position in the core. In



Figure 2. Negative ion ESI FTICR mass spectrum of the core

oligosaccharides isolated from LPS-6B. For the structure of compound

1 see Figure 3.

Figure 3. The corresponding parts of 1H NMR (A), 2D 1H,31P HMQC

(B), and 2D 1H,13C gHSQC (C) spectra of the Ko-containing

oligosaccharides isolated from LPS-6B.

Y.A. Knirel et al. / Carbohydrate Research 340 (2005) 1625–1630 1627
essentially free from LPS-6A. LPS-6B was degraded

under mild acid conditions to cleave the linkage between

the core and lipid A moieties.

As opposed to the LPS-6A core, ions consistent with

the presence of DDDDHep-containing compounds were

abundant in the ESI FTICR mass spectrum of the core
oligosaccharide mixture (Fig. 2), whereas ions consistent

with Gal-containing oligosaccharides possessed only

minor intensities. The spectrum showed structural hetero-

geneity owing to the presence or absence of GlcNAc

(Dm/z 203), Ko (Dm/z 236), and/or phosphoethanol-

amine (EtNP, Dm/z 123). The total content of GlcNAc

in the core of LPS-6B was estimated as �15% (compare

�50% in LPS-6A and �90% in LPS-25 and LPS-371). In
addition, Ko-containing molecules formed K- and

Na-salts (Dm/z 38 and 22, respectively), and Ko-lacking

molecules occurred in both normal and anhydro forms

(Dm/z 18).
The Ko-containing and Ko-lacking oligosaccharides

were separated by HiTrap Q anion-exchange chroma-

tography, the former reduced with borohydride, and

the structure of the major PEtN-containing compound
(1) was determined by 1H, 13C, and 31P NMR spectro-

scopy as described.5,6

Comparison of the NMR spectra of 1 and the corre-

sponding oligosaccharide isolated earlier from another

Ko-containing LPS-25 type1 showed that both have
Table 1. NMR chemical shifts of EtNP–Ko in oligosaccharide 1 (d, ppm)

Residue Nucleus

1 2 3 4

Ko 1H 4.05 4
13C 72.8 66

EtNP 1H 4.19 3.30
13C 63.0 40.9
31P 0.9
the identical carbohydrate backbone, the only distinc-

tion with 1 is the presence of EtNP. After assignment
of the spectra (the key NMR chemical shifts are shown

in Table 1), the location of EtNP at position 7 of termi-

nal Ko was established by a 2D 1H, 31P HMQC experi-

ment, which showed correlations of phosphorus at d 0.9

with protons of ethanolamine at d 4.19 (CH2O) and d
3.30 (CH2N) as well as with H-7 of Ko at d 4.52 (Fig.

3). This conclusion was confirmed by downfield dis-

placements, due to a phosphate deshielding effect, of
both H-7 and C-7 signals of EtNP–Ko to dH 4.52 and
Atom

5 6 7 8a 8b

.02 4.15 3.89 4.52 3.96 4.06

.9 68.6 71.7 75.4 62.0



β-D-GlcpNAc-(1→3)-L-α-D-Hepp-(1→3)- L-α-D-Hepp-(1→5)-Kdo 1
  7     4 4 
↑ ↑ ↑
 1    1 2 

D-α-D-Hepp-(1→7)-L-α-D-Hepp β-D-Glcp α-Kop-7-PEtN

Figure 4. Structure of the core oligosaccharides isolated from LPS-6B. Ko, DD-glycero-DD-talo-oct-2-ulosonic acid, DD-a-DD-Hep and LL-a-DD-Hep, DD-

glycero- and LL-glycero-DD-manno heptose, PEtN, phosphoethanolamine. Non-stoichiometric constituents are shown in italics. In a minority of

molecules, terminal DD-a-DD-Hep is replaced with terminal b-DD-Gal.

Table 2. GLC analysis of O-linked fatty acid composition of LPS-6B

Fatty acid Retention time

(min)

Relative detector

response

12:0 8.05 1.00

3-HO12:0 + 14:0 11.99 0.14

D214:1a 12.66 0.42

16:1 15.16 0.60

3-HO14:1 15.33 0.08

16:0 15.55 0.22

3-HO14:0 15.78 1.75

18:1 17.18 Trace

18:0 17.40 Trace

Given are data of the trimethylsilylated methyl esters of fatty acids

released by alkaline hydrolysis of the LPS.
a From 3-HO14:0 by b-elimination of 12:0 or 16:1.
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dC 75.4 from dH 4.11 and dC 72.2 in non-phosphorylated

Ko (data of the 2D 1H,13C HSQC spectrum). The gen-
eral structure of 1 shown in Figure 4 was confirmed by

determination by ESI FTICR MS of the molecular

masses of the LPS-6B-derived core oligosaccharides

(Fig. 2), which differed from the calculated molecular

masses by <0.03 Da.

The positive ion ESI FTICR mass spectrum of lipid A

released by mild acid degradation of LPS-6B (Fig. 5)

showed the major ion consistent with bisphosphoryl
hexaacyl lipid A (LA-6Bhexa, m/z 1925.41) containing

four 3-hydroxymyristoyl groups (3-HO14:0) and one

group each of lauroyl (12:0) and palmitoleoyl (16:1)

groups.1,7 Less intense was an ion for tetraacyl lipid A

(LA-6Btetra, m/z 1517.00) that lacks 12:0 and one of

the 3-HO14:0 groups. There were also ions of minor

intensity from pentaacyl and triacyl lipid A, which dif-

fered from LA-6Bhexa and LA-6Btetra in the lack of
12:0 (Dm/z �182) and 16:1 (Dm/z �236), respectively,

as well as monophosphoryl lipid A species resulting

from the loss of one of the phosphate group (Dm/z
�80) during mild acid degradation of LPS-6B. The

assignment of the ions was in agreement with fatty acid

analysis data of LPS-6B (Table 2). In addition, the spec-

trum contained ions consistent with the presence of tet-
Figure 5. Positive ion ESI FTICR mass spectrum of lipid A isolated

from LPS-6B. LA-6Bhexa and LA-6Btetra stand for hexaacyl and

tetraacyl lipid A. Given are mass numbers of monoadducts with

triethylamine (TEA), which was added to improve the signal-to-noise

ratio.
raacyl, pentaacyl, and hexaacyl lipid A species having a

molecular mass higher by 32 Da than the corresponding

counterparts with the defined composition (Fig. 5).

These ions could reflect (di)oxygenation of an O-linked

fatty acid(s); however, no major hydroxylated fatty acid

other than 3-HO14:0 was detected in fatty acid analysis

of LPS-6B. Therefore, the major ions at m/z 1957.35 and

1549.00 must remain unassigned.
With the core and lipid A structures characterized, the

ESI FTICR mass spectrum of the whole LPS-6B (Fig. 6)

could be assigned. An ion at m/z 3536.76 evidently

belonged to hexaacyl LPS-6B with the core terminated
Figure 6. Negative ion ESI FTICR mass spectrum of the purified

whole LPS-6B from Yersinia pestis KM218 cultivated at 6 �C. LPS-
6Bhexa and LPS-6Btetra stand for hexaacyl and tetraacyl LPS species.

For the structure of LPS-6Bhexa, see Figure 1B.
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with one residue each of DDDDHep and EtNP–Ko as

shown in Figure 1. Other compounds differ in the ab-
sence of GlcNAc (Dm/z �203) and replacement of

EtNP–Ko with EtNP–Kdo (Dm/z �16) in the core as

well as in the absence of 12:0 and one of the 3-HO14:0

groups from lipid A (Dm/z �408). Neither ions for pen-

taacyl or triacyl lipid A species, nor those for phosphate-

or EtNP-lacking molecules were observed in the mass

spectrum of the whole LPS-6B, and, hence, in the iso-

lated core and lipid A they were artifacts caused by mild
acid degradation of the LPS. The absence of ions consis-

tent with the presence of Gal-containing compounds

(expected Dm/z �30), which were detected as minor spe-

cies in the isolated core (Fig. 2), could be accounted for

by a too low content in intact LPS-6B. Again, there were

ions of higher m/z values from dioxygenated compounds

(Dm/z 32), whose structures could not be determined.

Overall, cold temperature induced significant struc-
tural modifications in the LPS structure of Y. pestis.

While LPS-6A possesses the same structure as the

already determined structure of one of the LPS-25 types,

LPS-6B is a new Y. pestis LPS type. The LPS-6B struc-

ture is distinguished by phosphorylation with phospho-

ethanolamine of terminal Ko or Kdo, whereas no core

phosphorylation had been hitherto observed in any Y.

pestis LPS. Another peculiar feature of LPS-6B is the
complete lack of Ara4N in lipid A, which is a major

component in other LPS types from strain KM218,

including both LPS-25 and LPS-37, as well as in all

other Y. pestis strains studied by us1 and others2,3 ear-

lier. Remarkably, as opposed to LPS-6B, a high degree

of substitution of lipid A phosphate groups with Ara4N

was also observed in LPS-6A. Furthermore, LPS-6B is

distinguished by the absence of glycine, a lower content
of GlcNAc and replacement of Gal with DDDDHep in the

core, oxygenation in lipid A and different fatty acid

components of the tetraacyl species. These data suggest

different mechanisms of control of the synthesis of LPS-

6A (LPS-25, LPS-37) and LPS-6B. The latter switches

on at cold temperatures, and one can speculate that

the production of LPS-6B may be beneficial for the

asymptomatic persistence of the bacterium in the host
during winter hibernation. Comparative studies of bio-

activity of LPS-6, LPS-25, and LPS-37 and structure–

activity correlation of the Y. pestis LPS will be reported

elsewhere.
3. Experimental

3.1. Growth of bacteria, isolation of LPS, and SDS-

PAGE

Y. pestis strain KM218, a plasmidless derivative of the

Russian vaccine strain EV line NIIEG, was grown at

6 �C in liquid aerated media containing fish-flour hydro-
lysate and yeast autolysate as described.1 The lipopoly-

saccharide (LPS-6) was extracted from dried cells with
phenol/CHCl3/light petroleum8 and purified by enzy-

matic digestion of nucleic acids and proteins followed

by repeated ultracentrifugation (105,000g, 4 h). LPS-

6B was extracted from the LPS-6 preparation by the

Bligh & Dyer procedure as described.4 SDS-glycine

polyacrylamide gel electrophoresis was performed and

gels were silver stained as described.9

3.2. Mild acid degradation of LPS

LPS-6 was degraded with aq 2% AcOH at 100 �C for

4 h, the water-insoluble crude lipid A precipitate (LA-

6) was separated by centrifugation (13,000g, 15 min),

washed with water, suspended in water, lyophilized,

and the solid preparations were purified away from

phospholipid contaminations by treatment with 1:1
CHCl3–MeOH.

The water-soluble supernatant was fractionated by

GPC on a column (70 · 2.6 cm) of Sephadex G50 (S)

(Amersham Biosciences, Sweden) using pyridinium ace-

tate buffer (4 mL pyridine and 10 mL AcOH in 1 L

water) as eluant and monitoring with a differential

refractometer (Knauer, Germany), followed by anion-

exchange chromatography on a HiTrap Q column
(5 mL; Amersham Biosciences, Sweden) using water to

elute neutral contaminants (10 min) and then a

0 ! 1 M gradient of NaCl in water over 50 min to give

two acidic fractions, which were desalted by GPC on

Sephadex G-15. For NMR spectroscopic studies, the

fraction eluted last was reduced with NaBH4 in water

(20 �C, 2 h).

3.3. Fatty acid analysis

For O-linked fatty acid analysis, LPS-6 was saponified

with 1 M NaOH (85 �C, 20 min), and then neutralized

with 1 M HCl. Fatty acids were extracted with CHCl3,

methylated with diazomethane, trimethylsilylated with

N,O-bis(trimethylsilyl)trifluoroacetamide, and analyzed

by GLC–MS on a Hewlett-Packard HP 5989A instru-
ment equipped with a 30-m HP-5 ms column (Hewlett-

Packard) using a temperature gradient of 150 �C
(3 min) ! 320 �C at 5 �C min�1.

3.4. NMR spectroscopy

Prior to measurements, samples were exchanged twice

with D2O. NMR spectra were recorded on a Varian
Inova 500 spectrometer in D2O solns at 25 �C with ace-

tone as an internal standard (dH 2.225, dC 31.5 ppm).

Standard pulse sequences were used in 2D NMR experi-

ments, including COSY, TOCSY (mixing time 120 ms),

NOESY (400 ms), 1H,13C gHSQC, 1H,13C HMQC-

TOCSY (100 ms), HMBC (100 ms), and 1H,31P HMQC
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(optimized for JP,H 11 Hz). Spectra were assigned using

the computer program Pronto.10

3.5. Mass spectrometry

High-resolution ESI FTICR MS was performed on an

ApexII-instrument (Bruker Daltonics, Billerica, USA)

equipped with a 7 T actively shielded magnet and an

Apollo electrospray ion source. Mass spectra were

acquired using standard experimental sequences as pro-
vided by the manufacturer. For negative ion MS,

samples (�10 ng lL�1) were dissolved in 50:50:0.001 2-

propanol–water–Et3N (TEA) and sprayed at a flow rate

of 2 lL min�1. When the whole LPS and lipid A were

studied, TEA was added stepwise not to exceed pH 9

to avoid cleavage of O-linked fatty acids. For positive

ion MS, a sample solution in 50:50:0.001 2-propanol-1

mM AcONH4-TEA was adjusted to pH 4.5 with conc
AcOH. Capillary entrance voltage was set to 3.8 kV

and dry gas temperature to 150 �C. The spectra were

charge deconvoluted, and mass numbers given refer to

the monoisotopic molecular masses.
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